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The space of the object is huge



Different views
Occlusion

Deformation

Clutter background

Invariant object recogntion



Pathway for visual object 
representation

High-level object code

Sereno et al.
Science 1995
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Organization is 
still unknow
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Inferotemporal
Cortex (IT)

Charles Gross

Discovery of face cells



Kanwisher, McDermott, & Chun, J. Neurosci, 1997

Fusiform face area

Discovery of a face area



Six patches of face-selective cortex
in the macaque brain

Tsao et al., Nature Neuroscience 2002
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Face network
• Cells within the network show consistent selectivity
• A network of connected patches.
• Increasing view invariance along the network.
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Face network
• Cells within the network show consistent selectivity
• A network of connected patches.
• Increasing view invariance along the network.
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Face network
• Cells within the network show consistent selectivity
• A network of connected patches.
• Increasing view invariance along the network.
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Specialized networks in IT cortex
Bodies Scenes Colored objects

Popivanov & Vogels, J Neurosci 2014 Kornblith & Tsao, Neuron 2013 Lafer-Sousa & Conway, NN 2014



Faces

Bodies

Scenes
Color

Current picture of IT organization



Retintopic hypothesis of IT organization

Conway 2018
Levy & Malach 2001



Retintopic hypothesis of IT organization

Conway 2018
Arcaro et al. 2017
Rajimehr et al. 2014



Animacy/size hypothesis of IT 
organization
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Konkle & Caramazza 2013

Kriegeskorte et al., 2008 



High dimension models (1)

Huth et al.,  2012



High dimension models (2)

Haxby et al.,  2011



Are there specialized networks 
beyond those already known?

*

Electrical stimulation +
simultaneous fMRI

Bao et al.,  2020



Electrical microstimulation + fMRI 
reveals a new network in IT cortex

*

Bao et al.,  2020



Electrical microstimulation + fMRI 
reveals a new network in IT cortex
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Stimulus set
Animals

Vehicles

Faces

Vegfruits

Houses

Manmade objects

24 views
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Cells with similar selectivity are 
clustered



Does network X exist across animals?

X1 X2 X3Monkey 1

fMRI localizer
3
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X1 X2 X3Monkey 1

fMRI localizer
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Microsimulation

Does network X exist across animals?



Most preferred

Least preferred

Does network X exist across animals?
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Monkey 2
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Increasing view invariance along 
Network X
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The corr. between same object
Across different views



Representations between patches 
differ in their view invariance

X1 X2 X3



Most Preferred

Least Preferred

What is this network coding?



𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑑𝑑2

4𝜋𝜋𝑎𝑎

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 5.03
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X

A simplified stimulus set
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Is there a systematic way to understand 
what network X is coding? 



How can we parametrize arbitrary 
objects?

Small set of 
numbers



4096 numbers

Yamins & DiCarlo, PNAS 2014

Alexnet

Generating a parametric object space

50 numbers
PCA



PC1

Object axes: Principal components of 
the penultimate layer of Alexnet

Spiky Smooth

PC2

Animate Inanimate

Highest Lowest

AlexNet (8 layers): Layer fc6
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pc1 pc2 pc3 pc4 pc5 pc6

-1.7 1.70-1.7 1.70 -1.7 1.70-1.7 1.70 -1.7 1.70 -1.7 1.70

* *

* *

Ramp-shaped tuning to subsets of 
features for two example cells
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Spatial organization of IT cortex 

Unmapped territory

Is there a general principle governing how networks 
are arranged in IT cortex?

• Network of connected patches
• Consistent selectivity
• Increasing view invariance
• Single cells use axis code



A remarkable coincidence

Most Preferred Least Preferred

Network X

Highest Lowest

AlexNet (fc6)



Spatial organization of IT cortex 
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Spatial organization of IT cortex 

Face



Spatial organization of IT cortex 
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Spatial organization of IT cortex 
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A map of object space

PC2

PC1

animate

inanimate

stubby spiky

PC2

PC1

Network X
Body
Face

Projection of images shown to monkey 
onto first two PCs of object space
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PC2

PC1

Network X
Body
Face

A map of object space

animate

inanimate

stubby spiky

PC2

PC1

Projection of images shown to monkey 
onto first two PCs of object spacePrediction: There should 

be a “stubby” network.



Object-topic fMRI mapping
PC2

PC1



10

5

Stubby1 Stubby2 Stubby3

fMRI activation to stubby objects



Responses of example cells from a 
stubby patch
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Population response from the stubby 
patch
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PC2
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Network X
Body
Face

A map of object space
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Projection of images shown to monkey 
onto first two PCs of object space
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A map of object space
Projection of images shown to monkey 

onto first two PCs of object space



M1

Spatial organization of IT cortex

Spiky

Body
Face
Stubby

Posterior



M1

Spatial organization of IT cortex

Body
Face
Stubby

Posterior

Spiky



M1

Spatial organization of IT cortex

Body
Face
Stubby

Posterior

Spiky



M1

Spatial organization of IT cortex

Body
Face
Stubby

Posterior

Spiky



Spatial organization of IT cortex
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Spatial organization of IT cortex

Network X

Body
Face
Stubby

PC2

PC1

Social importance



Faces

Bodies

Scenes
Color

How many islands are there?



Face Body Network 
X

Stubby Color Disparity Scene Covered
IT

Whole
IT

% of IT

90 
mm2

76 
mm2

84
mm2

85
mm2

34
mm2

51
mm2

35
mm2

306
mm2

570
mm2

Only part of IT is explained

Network X

Body
Face
Stubby

1 cm

Color
Disparity
Scene

53%



Four networks carry a complete code



Can we reconstruct arbitrary 
objects?

Neural activity from 
four networks



Implication of ramp-shaped tuning

Explained variance=72% Explained variance=52%
Slope=s1 Slope=s2

Slope=s3

Object feature 2 
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Object feature 1 Object feature 3 

Response of cell= 𝑠𝑠1 · 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1 + 𝑠𝑠2 · 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2 + ⋯ 𝑠𝑠50 · 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓50

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2
⋮
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑁𝑁

=
𝑠𝑠1,1 … 𝑠𝑠1,50
𝑠𝑠2,1
⋮

… 𝑠𝑠2,50
⋮

𝑠𝑠𝑁𝑁,1 … 𝑠𝑠𝑁𝑁,50

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2
⋮
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓50

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2
⋮
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=
𝑠𝑠1,1 … 𝑠𝑠1,50
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−1 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2
⋮
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑁𝑁

50 Object features = Weight matrix * Response of object cells



Direct reconstruction from neural activity 
using a Generative Adversarial Network

Image AlexNet Reconstructed ImageObject
Feature vector GAN

Dosovitskiy & Brox, NIPS 2016



Direct reconstruction from neural activity 
using a Generative Adversarial Network

Image AlexNet Reconstructed ImageGAN

Dosovitskiy & Brox, NIPS 2016

Object
Feature vector

Weight
matrix

Response of IT cells



Direct reconstruction from neural activity 
using a Generative Adversarial Network



Object
space



A unified model for the functional 
organization of inferotemporal cortex

Our model makes many predictions that we 
can confirmed



Predictions

• Predicting previous accounts of IT organization
• Predicting shape rather than semantic selectivity
• Predicting responses to new stimuli



Predictions

• Predicting previous accounts of IT organization
• Predicting shape rather than semantic selectivity
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Animacy/size hypothesis of IT 
organization
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Animacy/size hypothesis of IT 
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Animacy/size hypothesis of IT 
organization
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Vaziri et al., Neuron 2014

Study 2: object vs scene-like 

Preferred by the neurons
in the lower STS bank

Preferred by the neurons
in the TEd



Vaziri et al., PNAS 2014

Study 3: Curvature network

Yue et al., 2014



Predictions

• Predicting previous accounts of IT organization
• Predicting shape rather than semantic selectivity
• Predicting responses to new stimuli



Network X and the stubby network 
cannot be explained by semantic 

meaning
Network X Stubby Body
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fMRI

SUA
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Predictions

• Predicting previous accounts of IT organization
• Predicting shape rather than semantic selectivity
• Predicting responses to new stimuli



fmri experiments with new stimuli
Real objects

Silhouettes

Fake objects

Deep dream



The similar object spaces exist in 
other supervised-learning networks

PC2

PC1

PC2

PC1

Network X
Body
Face
Stubby



• The structure of the network

• Supervised learning and Unsupervised learning

• The images used in the training set (the visual 
experience)



The structure of the network



Unsupervised learning

Zhuang et al., 2021

PC1

PC2



Visual experience

PC1

PC2

Xu et al., 2021



The object space doesn’t exist in 
the un-trained network



IT organization

• Cells are anatomically clustered into four networks 
according to the first two components of their 
preferred axes, forming a map of object space.

• This map is repeated across three stages of 
increasing view invariance.

• Cells comprising these maps harbor sufficient 
coding capacity to approximately reconstruct 
objects.

• Similar object spaces can be observed in trained 
networks.
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