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The space of the object is huge
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Invariant object recogntion

Occlusion

Different views

Michelangelo 1475-1564

Clutter background
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Pathway for visual object
representation

Sereno et al.
Science 1995

Organization is
still unknow



Discovery of face cells
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Discovery of a face area

Fusiform face area
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Kanwisher, McDermott, & Chun, J. Neurosci, 1997



Six patches of face-selective cortex
in the macaque brain

Tsao et al., Nature Neuroscience 2002



Face network

Cells within the network show consistent selectivity

Organization
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Face network

Cells within the network show consistent selectivity
A network of connected patches

Organization

Moeller et al. Science 2008
Grimaldi et al., Neuron, 2016



Face network

Cells within the network show consistent selectivity
A network of connected patches
* Increasing view invariance along the network

Organization

Time (ms) 400



Specialized networks in IT cortex

Bodies Scenes Colored objects
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Popivanov & Vogels, J Neurosci 2014 Kornblith & Tsao, Neuron 2013 Lafer-Sousa & Conway, NN 2014



Current picture of IT organization
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Retintopic hypothesis of IT organization

AMIT

Conway 2018
Levy & Malach 2001



Retintopic hypothesis of IT organization

* Foveal +
representation

Conway 2018
Arcaro et al. 2017
Rajimehr et al. 2014



Small

Big

Animacy/size hypothesis of IT

Animate

organization

Inanimate

£/ 3
R20
Y Pt

LB X

| R

d A\
el b s

Animals vs Objects Small vs Big

Kriegeskorte et al., 2008
Konkle & Caramazza 2013



High dimension models (1)

Superior

]

anterior

Huth et al., 2012



High dimension models (2)

Haxby et al., 2011



Are there specialized networks
beyond those already known?

Electrical stimulation +
simultaneous fMRI

Bao et al.,, 2020



Electrical microstimulation + fMRI
reveals a new network in IT cortex

Bao et al.,, 2020



Electrical microstimulation + fMRI
reveals a new network in IT cortex




Stimulus set
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Cells with similar selectivity are
clustered
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Does network X exist across animals?
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Does network X exist across animals?
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Does network X exist across animals?

PR = jégf) % i Most preferred
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Monkey 1
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Increasing view invariance along
Network X

X3
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Make two gray bars
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Representations between patches
differ in their view invariance
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What is this network coding?

Most Preferred

Least Preferred
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A simplified stimulus set
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Cells are strongly tuned to aspect
ratio

Norm.
Response




Is there a systematic way to understand
what network X is coding?



How can we parametrize arbitrary
objects?
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Generating a parametric object space

224 x 224 x 64d

112 %112 x 128

Alexnet

hiG(x 56 x 2566

28 x 28 x 512

HE N
50 numbers
T PCA
m m .

4096 numbers

T

l1 1x1x4096 1x1x 1000
E T 1F 1

TxTxhH12
14x 14 x 512

5 convolution+ReLLT

Lﬂ max pooling
fully connected+RelLU

| =softmax

Yamins & DiCarlo, PNAS 2014



Object axes: Principal components of
the penultimate layer of Alexnet

Highest Lowest
KK FERFAH AR 00 o ¢
Spiky Smooth
Pcz.‘é‘!é‘;’ ¢ 2 hd S eoseeed e
YO Ahwolbdmwy o Ve WY ¥ P @ eae

Animate Inanimate

AlexNet (8 layers): Layer fc6



Response (Hz)
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Ramp-shaped tuning to subsets of
features for two example cells
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Spatial organization of IT cortex

Network of connected patches
Consistent selectivity
Increasing view invariance
Single cells use axis code

Unmapped territory

Is there a general principle governing how networks
are arranged in IT cortex?



A remarkable coincidence

Network X

Most Preferred
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Spatial organization of IT cortex
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Spatial organization of IT cortex

PC2
3inanimate

@ o
) = =ap
-

T

¢ @ - \

v
Gp e SPiky

7T %

e d

»\\'f
N,
| -

animate

”w e
?\' =

® Face



Spatial organization of IT cortex
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Spatial organization of IT cortex
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A map of object space

Projection of images shown to monkey
onto first two PCs of object space
PC2
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A map of object space

Projection of images shown to monkey
onto first two PCs of object space
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A map of object space

Projection of images shown to monkey
onto first two PCs of object space
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A map of object space

Projection of images shown to monkey

Prediction: There should ©Piect space
be a “stubby” network.

animate e Network X

o Body
® Face



ObJect -topic TMRI mappmg




fMRI activation to stubby objects

Stubbyl Stubby?2 Stubby3




Responses of example cells from a
stubby patch
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A map of object space

Projection of images shown to monkey
onto first two PCs of object space
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A map of object space

Projection of images shown to monkey
onto first two PCs of object space
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Spatial organization of IT cortex
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Spatial organization of IT cortex
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Spatial organization of IT cortex
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Spatial organization of IT cortex

Posterior Middle Anterior
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Spatial organization of IT cortex
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Spatial organization of IT cortex
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Spatial organization of IT cortex
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Spatial organization of IT cortex
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Spatial organization of IT cortex
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Spatial organization of IT cortex
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Spatial organization of IT cortex
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Spatial organization of IT cortex

Posterior Middle Anterior




Spatial organization of IT cortex

Social importance
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How many islands are there?

i
Bodies




Only part of IT is explained

Posterior e Body

® Face

® Stubby

® Network X

Anterior Middle ® Color
® Disparity
® Scene
Body Stubby Color Disparity Covered | Whole % of IT
IT IT
90 76 84 85 34 51 35 306 570 53%

mm? mm? mm? mm? mm? mm? mm? mm? mm?



Four networks carry a complete code



Can we reconstruct arbitrary

objects?
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Implication of ramp-shaped tuning

Slope=s1 Slope=s2
Slope=s3

Object feature 1 Object feature 2 Object feature 3

Response

Response of cell=s1 - feature, + s2 - feature, + --- s50 - feature,
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Direct reconstruction from neural activity
using a Generative Adversarial Network

Object

Image =%  AlexNet
g Feature vector

GAN =P Reconstructed Image

Dosovitskiy & Brox, NIPS 2016




Direct reconstruction from neural activity
using a Generative Adversarial Network

Response of IT cells
Weigh
matfixt l
Object

GAN =P Reconstructed Image
Feature vector

Dosovitskiy & Brox, NIPS 2016



Direct reconstruction from neural activity

|

using a Generative Adversarial Network
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A unified model for the functional
organization of inferotemporal cortex

Our model makes many predictions that we
can confirmed



Predictions

* Predicting previous accounts of IT organization
* Predicting shape rather than semantic selectivity
* Predicting responses to new stimuli



Predictions

* Predicting previous accounts of IT organization



Small

Big

Animacy/size hypothesis of IT
organization
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Konkle & Caramazza 2013



Small

Big

Animacy/size hypothesis of IT

organization
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Small

Big

Animacy/size hypothesis of IT
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Animacy/size hypothesis of IT
organization
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Study 2: object vs scene-like

Preferred by the neurons

Preferred by the neurons
in the lower STS bank in the TEd
PC2
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Vaziri et al., Neuron 2014



Study 3: Curvature network

Vaziri et al., PNAS 2014

PC2

Yue et al., 2014



Predictions

* Predicting shape rather than semantic selectivity



Network X and the stubby network
cannot be explained by semantic
meaning
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Body patch selectivity
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Body patch selectivity
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Predictions

* Predicting responses to new stimuli



fmri experiments with new stimul

Real objects
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The simi

ar object spaces exist in

other supervised-learning networks
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 The structure of the network

e Supervised learning and Unsupervised learning

* The images used in the training set (the visual
experience)



The structure of the network

5. Googlenet
(Inception5-a)

o

6. Inceptionv3 7. Resnetl01 8. Densenet201 9. InceptionresnetvZ
(Mixed8) (Res5a) (Conv5_block6_concat) (Block8_1)



Unsupervised learning

A Optimize Model through Unsupervised Loss (Local Aggregation)
Embedding Space

Training Input DCNN
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Zhuang et al., 2021



Visual experience

Xu et al., 2021



The object space doesn’t exist in
the un-trained network




|T organization

* Cells are anatomically clustered into four networks
according to the first two components of their
preferred axes, forming a map of object space.

* This map is repeated across three stages of
Increasing view invariance.

 Cells comprising these maps harbor sufficient
coding capacity to approximately reconstruct
objects.

e Similar object spaces can be observed in trained
networks.
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