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Towards Robust Detection of Adversarial Examples

Tianyu Pang 1 Chao Du 1 Yinpeng Dong 1 Jun Zhu 1

Abstract
Although the recent progress is substantial, deep
learning methods can be vulnerable to the mali-
ciously generated adversarial examples. In this
paper, we present a novel training procedure and
a thresholding test strategy, towards robust detec-
tion of adversarial examples. In training, we pro-
pose to minimize the reverse cross-entropy (RCE),
which encourages a deep network to learn latent
representations that better distinguish adversarial
examples from normal ones. In testing, we pro-
pose to use a thresholding strategy as the detector
to filter out adversarial examples for reliable pre-
dictions. Our method is simple to implement us-
ing standard algorithms, with little extra training
cost compared to the common cross-entropy mini-
mization. We apply our method to defend various
attacking methods on the widely used MNIST
and CIFAR-10 datasets, and achieve significant
improvements on robust predictions under all the
threat models in the adversarial setting.

1. Introduction
Deep learning (DL) has obtained unprecedented progress in
various tasks, including image classification, speech recog-
nition, and natural language processing (Goodfellow et al.,
2016). However, a high-accuracy DL model can be vulner-
able in the adversarial setting (Szegedy et al., 2014; Good-
fellow et al., 2015), where adversarial examples are mali-
ciously generated to mislead the model to output wrong
predictions. Several attacking methods have been devel-
oped to craft such adversarial examples (Goodfellow et al.,
2015; Kurakin et al., 2017a; Liu et al., 2017; Papernot et al.,
2016a;b; Carlini & Wagner, 2017a; Dong et al., 2017). As
DL is becoming ever more prevalent, it is imperative to
improve the robustness, especially in safety-critical applica-
tions, e.g., self-driving cars, healthcare and finance.

Therefore, various defenses have been proposed attempting
to correctly classify adversarial examples (Szegedy et al.,

1Dept. of Comp. Sci. & Tech., TNList Lab, State Key Lab
for Intell. Tech. & Systems, CBICR Center, Tsinghua University.
Correspondence to: Jun Zhu <dcszj@mail.tsinghua.edu.cn>.

2014; Gu & Rigazio, 2014; Papernot et al., 2016c; Rozsa
et al., 2016; Zheng et al., 2016). However, most of these
defenses are not effective enough, which can be successfully
attacked by more powerful adversaries (Carlini & Wagner,
2017a;b). Overall, as adversarial examples always exist for
a fixed parametric model (thus fixed decision boundary), it
is unlikely for such methods to solve the problem by pre-
venting adversaries from generating adversarial examples,
no matter how hard it is to find them.

Due to the difficulty, recent work on defense has turned to
detecting adversarial examples instead. Grosse et al. (2017)
introduce an extra class in classifiers solely for adversarial
examples, and similarly Gong et al. (2017) train an ad-
ditional binary classifier to decide whether an instance is
adversarial or not. Metzen et al. (2017) detect adversarial
examples via training a detection neural network, which
takes input from intermediate layers of the classification
network. Bhagoji et al. (2017) reduce dimensionality of the
input image fed to the classification network, and train a
fully-connected neural network on the smaller input. Li &
Li (2016) build a cascade classifier where each classifier is
implemented as a linear SVM acting on the PCA of inner
convolutional layers of the classification network. However,
these methods all require a large amount of extra computa-
tional cost, and some of them also result in loss of accuracy
on normal examples. Feinman et al. (2017) propose a kernel
density estimate method to detect the points lying far from
the data manifolds in the final-layer hidden space, which
does not change the structure of the classification network
with little extra computational cost. They also combine
with a Bayesian uncertainty estimate method which is only
available on dropout neural networks (Li & Gal, 2017).
However, Carlini & Wagner (2017b) show that each of these
defense methods can be evaded by an adversary targeting at
that specific defense, i.e., by a white-box adversary.

In this paper, we make contributions by presenting a new
defense method that provides a robust way to detect ad-
versarial examples. Specifically, we demonstrate that the
white-box adversaries have to craft adversarial examples
with macroscopic noises to successfully evade our defense,
which means the crafted adversarial examples can be easily
filtered out by a human observer. Our method consists of a
novel training procedure and a thresholding test strategy.
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In training, we propose to minimize a novel objective func-
tion, named as reverse cross-entropy (RCE), instead of min-
imizing the common cross-entropy (CE) loss (Goodfellow
et al., 2016). By minimizing RCE, our training procedure
encourages the classifiers to return a high confidence on the
true class while a uniform distribution on false classes for
each data point, and further makes the classifiers map the
normal examples to the neighborhood of low-dimensional
manifolds in the final-layer hidden space. The minimization
of RCE is simple to implement using stochastic gradient de-
scent methods, with little extra training cost, as compared to
CE. Therefore, it can be easily applied to any deep networks.

In testing, we propose a thresholding strategy as the detec-
tor based on the kernel density (Feinman et al., 2017). By
setting a proper threshold, the detector can filter out adver-
sarial examples for robust predictions, namely, it makes the
classifiers return meaningful predictions only when values
of kernel density are higher than a given threshold, and
otherwise refuse to predict.

We apply our method to defend various attacking meth-
ods on the widely used MNIST (LeCun et al., 1998) and
CIFAR-10 (Krizhevsky & Hinton, 2009) datasets. We test
the performance of our method under different threat mod-
els, i.e., oblivious adversaries, white-box adversaries and
black-box adversaries. We choose the kernel density es-
timate method as our baseline, which has shown its supe-
riority and versatility compared to other detection-based
defense methods (Carlini & Wagner, 2017b). The results
demonstrate that compared to the baseline, the proposed
method improves the robustness against adversarial attacks
under all the threat models, while maintaining state-of-the-
art accuracy on normal examples.

2. Preliminaries
This section provides the notations and introduces the threat
models and attacking methods.

2.1. Notations
A deep neural network (DNN) classifier can be generally
expressed as a mapping function F (X, θ) : Rd → RL,
where X ∈ Rd is the input variable, θ denotes all the pa-
rameters and L is the number of classes (hereafter we will
omit θ without ambiguity). Here, we focus on the DNNs
with softmax output layers. For notation clarity, we de-
fine the softmax function S(z) : RL → RL as S(z)i =
exp(zi)/

∑L
i=1 exp(zi), i ∈ [L], where [L] := {1, · · · , L}. Let

Z be the output vector of the penultimate layer, i.e., the final
hidden layer. This defines a mapping function: X 7→ Z to
extract data representations. Then, the classifier can be ex-
pressed as F (X) = S(WsZ+ bs), where Ws and bs are the
weight matrix and bias vector of the softmax layer respec-
tively. We denote the pre-softmax output WsZ+ bs as Zpre,

termed logits. Given an input x (i.e., an instance of X), the
predicted label for x is denoted as ŷ = arg maxi∈[L] F (x)i.
The probability value F (x)ŷ is often used as the confidence
score on this prediction (Goodfellow et al., 2016).

Let D := {(xi, yi)}i∈[N ] be a training set with N input-
label pairs, where yi ∈ [L] is the true class of xi. One
common training objective is to minimize the cross-entropy
(CE) loss, which is defined as:

LCE(x, y) = −1>y logF (x) = − logF (x)y ,

for a single pair (x, y). Here, 1y is the one-hot encod-
ing of y and the logarithm of a vector is defined as tak-
ing logarithm of each element. The CE training pro-
cedure intends to minimize the average CE loss (under
proper regularization) to obtain the optimal parameters
θ∗ = arg minθ

1
N

∑
i∈[N ] LCE(xi, yi), which can be ef-

ficiently done by stochastic gradient methods with back-
propagation (Rumelhart et al., 1988).

2.2. Threat Models
In the adversarial setting, an elaborate taxonomy of threat
models is introduced in Carlini & Wagner (2017b):
• Oblivious adversaries are not aware of the existence

of the detector D and generate adversarial examples
based on the unsecured classification model F .

• White-box adversaries know the scheme and param-
eters of D, and can design special methods to attack
both the model F and the detector D simultaneously.

• Black-box adversaries know the existence of the de-
tector D with its scheme, but have no access to the
parameters of the detector D or the model F .

2.3. Attacking Methods
Although DNNs have obtained substantial progress, adver-
sarial examples can be easily identified to fool the network,
even when its accuracy is high (Nguyen et al., 2015). Sev-
eral attacking methods on generating adversarial examples
have been introduced in recent years. Most of them can craft
adversarial examples that are visually indistinguishable from
the corresponding normal ones, and yet are misclassified by
the target model F . Here we introduce some well-known
and commonly used attacking methods.

Fast Gradient Sign Method (FGSM): Goodfellow et al.
(2015) introduce an one-step attacking method, which crafts
an adversarial example x∗ as x∗ = x+ε · sign(∇xL(x, y)),
with the perturbation ε and the training loss L(x, y).

Basic Iterative Method (BIM): Kurakin et al. (2017a) pro-
pose an iterative version of FGSM, with the formula as
x∗i = clipx,ε(x

∗
i−1 + ε

r · sign(∇x∗i−1
L(x∗i−1, y))), where

x∗0 = x, r is the number of iteration steps and clipx,ε(·) is a
clipping function to keep x∗i in its domain.
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Iterative Least-likely Class Method (ILCM): Kurakin
et al. (2017a) also propose a targeted version of BIM as
x∗i = clipx,ε(x

∗
i−1 − ε

r · sign(∇x∗i−1
L(x∗i−1, yll))), where

x∗0 = x and yll = arg mini F (x)i. ILCM can avoid label
leaking (Kurakin et al., 2017b), since it does not use the true
label y when crafting adversarial examples.

Jacobian-based Saliency Map Attack (JSMA): Papernot
et al. (2016b) propose another iterative method for targeted
attack, which perturbs one feature xi by a constant offset ε
in each iteration step that maximizes the saliency map

S(x, t)[i] =

{
0, if ∂F (x)y

∂xi
< 0 or

∑
j 6=y

∂F (x)j
∂xi

> 0,

(
∂F (x)y
∂xi

)
∣∣∣∑j 6=y

∂F (x)j
∂xi

∣∣∣ , otherwise.

Compared to other methods, JSMA perturbs fewer pixels.

Carlini & Wagner (C&W): Carlini & Wagner (2017a)
introduce an optimization-based method, which is one of the
most powerful attacks. They define x∗ = 1

2 (tanh(ω) + 1)
in terms of an auxiliary variable ω, and solve the problem
minω ‖ 12 (tanh(ω) + 1) − x‖22 + c · f( 1

2 (tanh(ω) + 1)),
where c is a constant that need to be chosen by modified
binary search. f(·) is an objective function as f(x) =
max(max{Zpre(x)i : i 6= y} − Zpre(x)i,−κ), where κ
controls the confidence on adversarial examples.

Note that both JSMA and C&W do not rely on the training
loss L(x, y), which indicates that these attacks are indepen-
dent of the training procedures of the target networks.

3. Methodology
In this section, we present a new method to improve the
robustness of classifiers against adversarial examples. We
first provide some insights on the existence of adversarial
examples and the insufficiency of the confidence score as a
thresholding metric, which guide us to the new method.

3.1. The Intrinsic Existence of Adversarial Examples
Previous work (Goodfellow et al., 2015; Papernot et al.,
2016b) hypothesizes that the existence of adversarial ex-
amples is caused by certain defects in training. One main
support is from the universal approximator theorem (Hornik
et al., 1989) that DNNs are able to represent functions resist-
ing adversarial examples. However, in practice any given
DNN has an architecture of limited scale, thereby a limited
representation capability, and the existence of adversarial
examples is unavoidable. Namely, for a given DNN classi-
fier, its decision boundary is fixed. Then, any pair of similar
instances located on different sides of the decision boundary
will be classified into different classes. Very often, such a
pair of inputs are not distinguishable by human observers;
thus, it sounds counterintuitive and irrational to have a jump
on the predicted labels. Previous works that attempt to clas-
sify adversarial examples correctly (Szegedy et al., 2014;

Gu & Rigazio, 2014; Papernot et al., 2016c) only result in
the change of the distribution of decision boundary but the
jump on the predicted labels nearby the decision boundary
still exists. Therefore, a smart enough adversary can always
find new adversarial examples to successfully attack the tar-
get classifier no matter how the decision boundary changes,
as demonstrated by Szegedy et al. (2014).

3.2. The Insufficiency of Confidence and a New Metric
Given the intrinsic existence of adversarial examples, we
design a defense method to detect them instead, which can
help the classifiers distinguish adversarial examples from
normal ones so as to filter them out for robust predictions.

A detection method relies on some metrics to decide whether
an input x is adversarial or not for a given classifierF (X). A
potential candidate is the confidence F (x)ŷ on the predicted
label ŷ, which inherently conveys the degree of certainty on
a prediction and is widely used (Goodfellow et al., 2016). As
F predicts incorrectly on adversarial examples, intuitively
we should expect a higher confidence on a normal example
than that on an adversarial one, which consequently allows
us to distinguish them by the confidence values. However, a
well-trained DNN classifier usually not only misclassifies
adversarial examples but also gives high confidence on its
predictions (Goodfellow et al., 2015; Nguyen et al., 2015),
which renders the confidence unreliable in the adversarial
setting. This is not surprising because in the normal setting
without adversaries, the distribution of the test data is sim-
ilar with that of the training data, then a high confidence
implies a high probability to be a correct prediction. In the
adversarial setting, adversaries can explore the points far
from the data distribution (Li & Gal, 2017), and the predic-
tions in these regions mostly result from extrapolation with
high uncertainty. Therefore, a high confidence returned in
these regions is unreliable and probably a false positive.

Instead of using the unreliable confidence as the sole de-
tection metric in the adversarial setting, we construct an-
other metric which is more pertinent and helpful to our goal.
Namely, we define the metric of non-ME—the entropy of
normalized non-maximal elements in F (x), as:

non-ME(x) = −
∑
i 6=ŷ

F̂ (x)i log(F̂ (x)i), (1)

where F̂ (x)i = F (x)i/
∑

j 6=ŷ F (x)j are the normalized non-
maximal elements in F (x). Hereafter we will consider the
final hidden vector z of F given x, and use the notation
F (z) with the same meaning as F (x) without ambiguity.

To intuitively illustrate the ideas, Fig. 1a presents an ex-
ample of classifier F in the hidden space, where z ∈ R2

and L = 3. Let Zpre,i, i ∈ [L] be the i-th element of the
logits Zpre. Then the decision boundary between each pair
of classes i and j is the hyperplane dbij := {z : Zpre,i =
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Zpre,j}. In Fig. 1a, each dbij corresponds to one of the three
black lines. Let DBij = {Zpre,i = Zpre,j + C,C ∈ R}
be the set of all parallel hyperplanes w.r.t. dbij , which are
parallel lines in a 2d space as in Fig. 1a. Furthermore, we
denote the half space Zpre,i ≥ Zpre,j as db+ij . Then, we
can formally represent the decision region of class ŷ as
ddŷ =

⋂
i 6=ŷ db

+
ŷi and the corresponding decision bound-

ary of this region as ddŷ. Note that the output F (z) has
L − 1 equal non-maximal elements for any points on the
low-dimensional manifold Sŷ = (

⋂
i,j 6=ŷ dbij)

⋂
ddŷ. For

example, when L = 3 and ŷ = 1, S1 is db23
⋂
dd1, which

is one of the three black dashed lines in Fig. 1a.

With the above notations, we have Lemma 1 as below:

Lemma 1. (Proof in Appendix A) In the decision region ddŷ
of class ŷ, ∀i, j 6= ŷ, d̃bij ∈ DBij , the value of non-ME for
any point on the low-dimensional manifold

⋂
i,j 6=ŷ d̃bij is

constant. In particular, non-ME obtains its global maximal
value log(L− 1) on and only on Sŷ .

When Sŷ is empty, the conclusion of Lemma 1 becomes
trial. Thus we consider the non-trivial cases where Sŷ 6= ∅.
Lemma 1 tells us that in the decision region of class ŷ if one
moves a normal input along the low-dimensional manifold⋂
i,j 6=ŷ d̃bij , then its value of non-ME will not change, and

vice verse. This conclusion leads to Theorem 1:

Theorem 1. (Proof in Appendix A) In the decision region
ddŷ of class ŷ, ∀i, j 6= ŷ, z0 ∈ ddŷ, there exists a unique

d̃b0ij ∈ DBij , such that z0 ∈ Q0, where Q0 =
⋂
i,j 6=ŷ d̃b

0
ij .

Let Qŷ0 = Q0

⋂
ddŷ , then the solution set of the problem

arg min
z0

(max
z∈Qŷ

0

F (z)ŷ)

is Sŷ. Furthermore, ∀z0 ∈ Sŷ there is Q0 = Sŷ, and
∀z ∈ Sŷ

⋂
ddŷ , F (z)ŷ = 1

L .

Let z0 be the representation of a normal example with the
predicted class ŷ. When crafting adversarial examples based
on z0, adversaries need to perturb z0 across the decision
boundary ddŷ. Theorem 1 says that there exists a unique
low-dimensional manifold Q0 that z0 lies on in the decision
region of class ŷ. If we can somehow restrict adversaries
changing the values of non-ME when they perturb z0, then
by Lemma 1, the adversaries can only perturb z0 along the
manifold Q0. In this case, the nearest adversarial coun-
terpart z∗ for z0 must be in the set Qŷ0 (Moosavi-Dezfooli
et al., 2016). Then the value of maxz∈Qŷ

0
F (z)ŷ is an upper

bound of the prediction confidence F (z∗)ŷ. This bound is
a function of z0. Theorem 1 further tells us that if z0 ∈ Sŷ,
the corresponding value of the upper bound will obtain its
minimum 1

L , which leads to F (z∗)ŷ = 1
L . In a nutshell,

under the restriction that the values of non-ME are invariant
when crafting adversarial examples, the nearest adversarial

Original

input z0

Decision

boundary

Isoline of

non-ME=t 

Decision

boundary

Decision

boundary

Isoline of

non-ME=t 

Isoline of

non-ME=t 

Adversarial

input z1

Adversarial

input z2

C

a

c

b

Figure 1. a, The three black solid lines are the decision boundary
of the classifier, and each black line (both solid and dashed parts)
is the decision boundary between two classes. The blue dot-dashed
lines are the isolines of non-ME = t. b, t-SNE visualization of
the final hidden vectors on CIFAR-10. The model is Resnet-32.
The training procedure is CE. c, The training procedure is RCE.

counterpart for any normal example on Sŷ will have the
lowest value 1

L of confidence. This makes the nearest ad-
versarial counterpart be easily distinguished according to its
confidence score, and adversaries have to perturb the normal
example further to obtain a higher value of confidence.

In practice, the restriction can be implemented by a detector
with the new metric of non-ME. Specifically, if the learned
representation transformation: X 7→ Z in a DNN classifier
can map the normal examples to the neighborhood of Sŷ,
then constructing the detector will filter out the examples
that violate the restriction, where those examples are usually
adversarial. In the case of Fig. 1a, all the points that locate
on the set Sŷ (black dashed lines) have highest values of
non-ME = log 2. Assuming that the classifier F makes
all the normal examples be mapped to the neighborhood of
Sŷ by the representation transformation, which indicates
that for any normal example z0 the value of non-ME(z0) is
higher than a threshold t. For implementation feasibility, we
relax the restriction z∗ ∈ Qŷ0 to non-ME(z∗) ≥ t. There-
fore, given any unidentified input (e.g., a crafted adversarial
example), if the input violates the restriction, i.e., its non-
ME value is less than t, then the detector will immediately
know that this input is not normal and filters it out.

As depicted in Fig. 1a, z0 is the original normal input. z0
locates in the neighborhood of Sŷ , where the neighborhood
boundary consists of the isolines of non-ME = t shown by
the blue dot-dashed lines. When there is no detector, the
nearest successful adversarial example is z1 locating on the
nearest decision boundary w.r.t. z0. In contrast, when non-
ME is used as the detection metric, z1 will be easily filtered
out by the detector because non-ME(z1) is less than t, and
the nearest successful adversarial example becomes z2 in
this case, which locates on the nearest junction manifold
of the neighborhood boundary and the decision boundary.
Note that the central point C of the decision boundary in
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Fig. 1a is actually the singleton set Sŷ
⋂
ddŷ in this case,

on which F (z) has the lowest confidence 1
L = 1

3 as in-
dicated by Theorem 1. It is easy to find that the minimal
perturbation ‖z0−z2‖ is larger than ‖z0−z1‖, almost every-
where. This means that due to the existence of the detector,
adversaries have to move the original example further to
successfully generate a nearest adversarial example that can
fool the detector. Furthermore, according to Theorem 1, the
confidence at z2 is also lower than it at z1. Thus although
z2 can fool the non-ME detector, it will still be most likely
distinguished since its low confidence score.

3.3. The Reverse Cross-Entropy Training Procedure
Based on the above analysis, we now design a new train-
ing objective to improve the robustness of DNN classifiers.
The key is to enforce a DNN classifier to map all the nor-
mal instances to the neighborhood of the low-dimensional
manifolds Sŷ in the final-layer hidden space. According to
Lemma 1, this can be achieved by making the non-maximal
elements of F (x) be as equal as possible, thus having a high
non-ME value for every normal input. Specifically, for a
training data (x, y), we let Ry denote its reverse label vec-
tor whose y-th element is zero and other elements equal to

1
L−1 . One obvious way to encourage uniformity among the
non-maximal elements of F (x) is to apply the model regu-
larization method termed label smoothing (Szegedy et al.,
2016), which can be done by introducing a cross-entropy
term between Ry and F (x) in the CE objective:

LλCE(x, y) = LCE(x, y)− λ ·R>y logF (x), (2)

where λ is a trade-off parameter. However, it is easy to
show that minimizing LλCE equals to minimizing the cross-
entropy between F (x) and the L-dimensional vector Pλ:

Pλi =

{
1

λ+1 , i = y,
λ

(L−1)(λ+1) , i 6= y.
(3)

Note that 1y = P 0 and Ry = P∞. When λ > 0, let
θ∗λ = arg minθ LλCE , then the prediction F (x, θ∗λ) will tend
to equal to Pλ, rather than the ground-truth 1y . This makes
the output predictions be biased. In order to have unbiased
predictions that make the output vector F (x) tend to 1y,
and simultaneously encourage uniformity among probabili-
ties on untrue classes, we define another objective function
based on what we call reverse cross-entropy (RCE) as

LRCE(x, y) = −R>y logF (x). (4)

Minimizing RCE is equivalent to minimizing L∞CE . Note
that by directly minimizing LRCE , i.e., θ∗R = arg minθ LRCE ,
one will get a reverse classifier F (X, θ∗R), which means
that given an input x, the reverse classifier F (X, θ∗R) will
not only tend to assign the lowest probability to the true
class but also tend to output a uniform distribution on other

classes. This simple insight leads to our entire RCE training
procedure which consists of two parts, as outlined below:

Reverse training: Given the training set D, we train the
DNN F (X, θ) to be a reverse classifier by minimizing the
average RCE loss: θ∗R = arg minθ

1
N

∑N
d=1 LRCE(xd, yd).

Reverse logits: We negate the final logits fed to the softmax
layer as FR(X, θ∗R) = S(−Zpre(X, θ∗R)) to get the outputs.

Then we will obtain the network FR(X, θ∗R) that returns
ordinary predictions on classes, and FR(X, θ∗R) is referred
as the network trained via the RCE training procedure.

Theorem 2. (Proof in Appendix A) Let (x, y) be a given
training data. Under the L∞-norm, if there is a training
error α� 1

L that ‖S(Zpre(x, θ
∗
R))−Ry‖∞ ≤ α, then we

have bounds

‖S(−Zpre(x, θ∗R))− 1y‖∞ ≤ α(L− 1)2,

and ∀j, k 6= y,

|S(−Zpre(x, θ∗R))j − S(−Zpre(x, θ∗R))k| ≤ 2α2(L− 1)2.

Theorem 2 demonstrates two important properties of the
RCE training procedure. First, it is consistent and unbiased
in the sense that when the training error α→ 0, the output
FR(x, θ∗R) converges to the one-hot label vector 1y . Second,
the upper bounds of the difference between any two non-
maximal elements in outputs decrease as O(α2) w.r.t. α for
RCE, much faster than theO(α) for CE and label smoothing.
These two properties make the RCE training procedure meet
our requirements as described above.

3.4. The Thresholding Test Strategy
Given a classifier F (X) trained via the CE or RCE training
procedure, we implement a detector by a thresholding test
strategy for robust prediction. After presetting a metric and
a threshold T , the detector classifies the input as normal and
decides to return the predicted label if the value of metric
is larger than T , or classifies the one as adversarial and
returns NOT SURE otherwise. We introduce three candidate
metrics below, and separately test them in Section 4.

Confidence: Given an input x, the corresponding confi-
dence score is calculated as Confidence(x) = F (x)ŷ .

non-ME: According to Eq. (1), the non-ME score is calcu-
lated as non-ME(x) = −

∑
i 6=ŷ F̂ (x)i log(F̂ (x)i).

Kernel density: Because of the relatively better robustness
and versatility of the kernel density estimate method (Fein-
man et al., 2017; Carlini & Wagner, 2017b), we choose
kernel density (K-density) as a candidate metric. The K-
density is calculated in the final-layer hidden space. Given
the predicted label ŷ, K-density is defined as KD(x) =

1
|Xŷ|

∑
xi∈Xŷ

k(zi, z), where Xŷ represents the set of train-
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Detector allowable region

Normal examples

Adversarial examples that succeed to fool detector

CE

Adversarial examples that fail to fool detector

RCE

Detector allowable region

Detector allowable region

Detector allowable region

Figure 2. Practical attacks on the trained networks. The blue re-
gions are of the original classes for normal examples, and the red
regions are of the target classes for adversarial examples.

ing points with label ŷ, zi and z are the corresponding final-
layer hidden vectors, k(zi, z) = exp(−‖zi − z‖2 /σ2) is
the Gaussian kernel with the bandwidth σ treated as a hyper-
parameter. K-density can be regarded as some combination
of the first two metrics, since it can simultaneously con-
vey the information about them. As shown in Section 4.3,
K-density is more reliable in the adversarial setting.

Carlini & Wagner (2017b) show that previous methods on
detecting adversarial examples can be evaded by white-box
adversaries. Besides, in practice adversaries do not have to
fool the detector (i.e., satisfies the restriction in Section 3.2)
on all the points it explores when crafting adversarial exam-
ples. Namely, adversaries only need to keep the crafted ad-
versarial examples in the detector allowable regions when fi-
nally feeding them into the classifiers. However, our method
can defend the white-box attacks effectively. This is because
the RCE training procedure conceals normal examples on
low-dimensional manifolds in the final-layer hidden space,
as shown in Fig. 1b and Fig. 1c. Then the detector allowable
regions can also be set low-dimensional as long as the re-
gions contain all normal examples. Therefore the white-box
adversaries who intend to fool our detector have to generate
adversarial examples with preciser calculations and larger
noises. This is intuitively illustrated in Fig. 2, where the
adversarial examples crafted on the networks trained by
CE are easier to locate in the detector allowable regions
than those crafted on the networks trained by RCE. This
illustration is experimentally verified in Section 4.4.

4. Experiments
We now present the experimental results to demonstrate the
effectiveness of our method on improving the robustness of
DNN classifiers in the adversarial setting.

4.1. Setup
We use the two widely studied datasets—MNIST (LeCun
et al., 1998) and CIFAR-10 (Krizhevsky & Hinton, 2009).
MNIST is a collection of handwritten digits in classes 0 to
9. It has a training set of 60,000 images and a test set of
10,000 images. CIFAR-10 consists of 60,000 color images

in 10 classes with 6,000 images per class. There are 50,000
training images and 10,000 test images. The pixel values
of images in both datasets are scaled to be in the interval
[−0.5, 0.5]. The normal examples in our experiments refer
to all the ones in the training and test sets. In the adversarial
setting, the baseline we use is the kernel density estimate
method, i.e., CE as the training objective and K-density as
the thresholding metric, which has shown its superiority
and versatility compared to other detection-based defense
methods (Feinman et al., 2017; Carlini & Wagner, 2017b).

Table 1. Classification error rates (%) on test sets.

Method MNIST CIFAR-10
DropConnect (Wan et al., 2013) 0.57 9.32

Maxout (Goodfellow et al., 2013) 0.45 9.38
NiN (Lin et al., 2014) 0.47 8.81

FitNet (Romero et al., 2015) 0.51 8.39
DSN (Lee et al., 2015) 0.39 7.97

R-CNN (Liang & Hu, 2015) 0.31 7.09
Resnet-32 (CE) 0.38 7.13

Resnet-32 (RCE) 0.29 7.02
Resnet-56 (CE) 0.36 6.49

Resnet-56 (RCE) 0.32 6.60

4.2. Classification on Normal Examples
We first evaluate in the normal setting, where we implement
Resnet-32 and Resnet-56 (He et al., 2016a) on both datasets.
For each network, we use both the CE and RCE as the
training objectives, trained by the same settings as He et al.
(2016b). The number of training steps for both objectives is
set to be 20,000 on MNIST and 90,000 on CIFAR-10. Here-
after for notation simplicity, we will indicate the training
procedure used after the model name of a trained network,
e.g., Resnet-32 (CE). Similarly, we indicate the training
procedure and omit the name of the target network after an
attacking method, e.g., FGSM (CE).

Table 1 shows the test error rates, where the thresholding test
strategy is disabled and all the points receive their predicted
labels. We can see that the performance of the networks
trained by RCE is as good as and sometimes even better than
those trained by the traditional CE procedure. Note that we
apply the same training hyperparameters (e.g., learning rates
and decay factors) for both the CE and RCE procedures,
which suggests that RCE is easy to optimize and does not
require much extra effort on tuning hyperparameters.

To verify that the RCE procedure tends to map all the normal
inputs to the neighborhood of Sŷ in the hidden space, we
apply the t-SNE technique (Maaten & Hinton, 2008) to
visualize the distribution of the final hidden vector z on the
test set. Fig. 1b and Fig. 1c give the 2-D visualization results.
For clarity, we show the results on 1,000 test examples of
CIFAR-10. We can see that the networks trained by RCE can
successfully map the test examples to the neighborhood of
low-dimensional manifolds in the final-layer hidden space.
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Table 2. AUC-scores (10−2) and average distortions of adversarial examples on MNIST and CIFAR-10. The model of target networks is
Resnet-32. Values are calculated on the examples which are correctly classified as normal examples and then misclassified as adversarial
counterparts. Bandwidths used when calculating K-density are σ2

CE = 1/0.26 and σ2
RCE = 0.1/0.26. Boldface indicates the better

combination w.r.t. the objective, and asterisk * indicates the best combination under certain attack.

Attack Objective
MNIST CIFAR-10

Distortion AUC-scores (10−2) Distortion AUC-scores (10−2)
Confidence non-ME K-density Confidence non-ME K-density

FGSM CE 26.92 79.7 66.8 98.8 29.80 71.5 66.9 99.7*
RCE 26.63 98.8 98.6 99.4* 29.81 92.6 91.4 98.0

BIM CE 6.80 88.9 70.5 90.0 6.29 0.0 64.6 100.0*
RCE 7.15 91.7 90.6 91.8* 5.46 0.7 70.2 100.0*

ILCM CE 6.57 98.4 50.4 96.2 2.51 16.4 37.1 84.2
RCE 6.60 100.0* 97.0 98.6 2.06 64.1 77.8 93.9*

JSMA CE 12.1 98.6 60.1 97.7 1.53 99.2 27.3 85.8
RCE 12.87 100.0* 99.4 99.0 1.40 99.5* 91.9 95.4

C&W CE 8.63 98.6 64.1 99.4 0.65 99.5 50.2 95.3
RCE 11.04 100.0* 99.5 99.8 0.77 99.6* 94.7 98.2

C&W-hc CE 13.70 0.0 40.0 91.1 0.93 0.0 28.8 75.4
RCE 23.20 0.1 93.4 99.6* 1.81 0.2 53.6 91.8*

4.3. Performance under the Oblivious Attack
We test the performance of the trained Resnet-32 networks
on MNIST and CIFAR-10 under the oblivious attack, where
we investigate the attacking methods as in Sec. 2.3. We first
disable the thresholding test strategy and make classifiers re-
turn all predictions to study the networks ability of correctly
classifying adversarial examples. We use the gradient-based
attacking methods: FGSM, BIM, ILCM and JSMA, and we
calculate the classification accuracy of networks on crafted
adversarial examples w.r.t. the perturbation ε.

Fig. 3 shows the results. We can see that Resnet-32 (RCE)
has higher accuracy scores than Resnet-32 (CE) under all the
four attacks on both datasets. This happens because when
applying gradient-based methods to attack the networks
trained by RCE, the gradients used by the attacking meth-
ods are less accurate, which leads to less accurate attacks.
However, the adversarial examples crafted by optimization-
based methods like C&W can still make Resnet-32 (RCE)
misclassify with an 100% success rate, since these methods
iterate thousands of times and rely much less on the accu-
racy of gradients. Note that the attacks on CIFAR-10 are
much more efficient than those on MNIST in the sense of
requiring smaller perturbations to achieve same attacking
success rates, but when adversaries impose large enough
perturbations, attacks can still have high success rates on
both datasets. That is why the thresholding test strategy is
necessary to detect and filter out adversarial examples.

We activate the thresholding test strategy and separately test
the performance of three candidate metrics, i.e., Confidence,
non-ME and K-density. We construct simple binary clas-
sifiers to decide whether an example is adversarial or not
by thresholding with different metrics, and then calculate
the AUC-scores of ROC curves on these binary classifiers.
Table 2 shows the AUC-scores calculated under different
combinations of training procedures and thresholding met-
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Figure 3. Classification accuracy on adversarial examples. The
model of target networks is Resnet-32.

rics on both datasets. We also calculate the average dis-
tortions (Szegedy et al., 2014) as (

∑
i=[d](x

∗
i − xi)2/d)

1
2 ,

where x∗ is the generated adversarial example and each
pixel feature is rescaled to be in the interval [0, 255]. More-
over, to make our investigation more convincing, we intro-
duce the high-confidence version of the C&W attack (abbr.
to C&W-hc) that sets the parameter κ in the C&W attack to
be 10 in our experiments. The C&W-hc attack can generate
adversarial examples with the confidence higher than 0.99,
and previous work has shown that the adversarial examples
crafted by C&W-hc are stronger and more difficult to detect
than those crafted by C&W (Carlini & Wagner, 2017a;b).

From Table 2, we can see that our method with K-density as
the thresholding metric performs better in almost all cases,
and non-ME itself is also a pretty reliable metric, although
not as good as K-density. Besides, the C&W attack and its
variants (e.g., C&W-hc) need much larger minimal distor-
tions to successfully attack on the networks trained by RCE
than on those trained by CE. The similar phenomenon is also
observed under the white-box attack. Another noteworthy
phenomenon shown in Table 2 is that the classifiers trained
by RCE return more reliable confidence, which verifies the
conclusion in Theorem 1. Furthermore, we also show that
our method can better distinguish between noisy examples
and adversarial examples, as demonstrated in Appendix B.3.
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4.4. Performance under the White-Box Attack
We test our method under the white-box attack, which is the
most difficult threat model and no effective defense exits
yet. Due to the prominent performance under the oblivious
attack, we select K-density as our thresholding metric. We
apply the white-box version of the C&W attack introduced
in Carlini & Wagner (2017b), which is constructed specially
to fool the K-density detectors. We refer to this attack as
C&W-wb. Compared to the C&W attack, C&W-wb intro-
duces a new loss term f2(x∗) that penalizes the adversarial
example x∗ being detected by the K-density detectors. The
loss f2(x∗) = max(− log(KD(x∗))− η, 0), where η is set
to be the median of − log(KD(·)) on the training set.

In practice, we adopt the two-phase implementation pro-
cedure of C&W-wb (Carlini & Wagner, 2017b). Table 3
shows the average distortions and the ratios of f2(x∗) > 0
on the adversarial examples crafted by C&W-wb, where a
higher ratio indicates that the detector is more robust and
harder to be fooled. We find that nearly all the adversarial
examples generated on Resnet-32 (CE) have f2(x∗) ≤ 0,
which means that the values of K-density on them are greater
than half of the values on the training data. This result is
consistent with previous work (Carlini & Wagner, 2017b).

MNIST

Normal

CE

RCE

CIFAR-10

Normal

CE

RCE

Figure 4. Some normal and adversarial examples from MNIST
and CIFAR-10. Adversarial examples are generated by C&W-wb
with minimal distortions. The normal test images are termed as
Normal, and adversarial examples generated on Resnet-32 (CE)
and Resnet-32 (RCE) are separately termed as CE / RCE.

However, note that applying C&W-wb on our method has
a much higher ratio and results in a much larger minimal
distortion. Fig. 4 shows some adversarial examples crafted
by C&W-wb with the corresponding normal ones. We find
that the adversarial examples crafted on Resnet-32 (CE)
are indistinguishable from the normal ones by human eyes.
In contrast, those crafted on Resnet-32 (RCE) have macro-
scopic noises, which are not strictly adversarial examples
since they are visually distinguishable from normal ones.
The inefficiency of the most aggressive attack C&W-wb
under our defense verifies our illustration in Fig. 2. More-
over, in C&W-wb we set κ at 0, which means that even

though it can fool the K-density detectors, it cannot simul-
taneously fool the confidence metric. More details on the
limitation of C&W-wb are in Appendix B.4. Iterative-based
attacking methods cannot effectively fool the K-density de-
tectors even if there are additional special losses in their
objective functions, since fooling detectors requires much
preciser calculations than fooling classifiers, which can only
be efficiently done by optimization-based attacks.

Table 3. The ratios (%) of f2(x∗) > 0 and average distortions of
the adversarial examples generated by C&W-wb on MNIST and
CIFAR-10. The model is Resnet-32 and the metric is K-density.

Objective MNIST CIFAR-10
Ratio Distortion Ratio Distortion

CE 1 17.12 0 1.26
RCE 77 31.59 12 3.89

4.5. Performance under the Black-Box Attack
For complete analysis, we investigate the robustness un-
der the black-box attack. The success of the black-box
attack is based on the transferability of adversarial examples
among different models (Goodfellow et al., 2015). We set
the trained Resnet-56 networks as the target models. Adver-
saries intend to attack them but do not have access to their
parameters. Thus we set the trained Resnet-32 networks
to be the substitute models that adversaries actually attack
on and then feed the crafted adversarial examples into the
target models. Since adversaries know the existence of the
K-density detectors, we apply the C&W-wb attack. We find
that the adversarial examples crafted by the C&W-wb attack
have poor transferability, where less than 50% of them can
make the target model misclassify on MNIST and less than
15% on CIFAR-10. Table 4 shows the AUC-scores in four
different cases of the black-box attack on CIFAR-10, and
the AUC-scores in the same cases on MNIST are all higher
than 95%. Note that in our experiments the target models
and the substitute models have very similar structures, and
the C&W-wb attack becomes ineffective even under this
quite ‘white’ black-box attack.

Table 4. AUC-scores (10−2) on CIFAR-10. Resnet-32 is the sub-
stitute model and Resnet-56 is the target model.

Resnet-32 (CE) Resnet-32 (RCE)
Resnet-56 (CE) 75.0 90.8

Resnet-56 (RCE) 89.1 84.9

5. Conclusions
We present a novel method to improve the robustness of
deep learning models by reliably detecting and filtering out
adversarial examples, which can be implemented using stan-
dard algorithms with little extra training cost. Our method
performs well on both the MNIST and CIFAR-10 datasets
under all threat models and various attacking methods, while
maintaining state-of-the-art accuracy on normal examples.
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A. Proof
Lemma 1. In the decision region ddŷ of class ŷ, ∀i, j 6=
ŷ, d̃bij ∈ DBij , the value of non-ME for any point on the
low-dimensional manifold

⋂
i,j 6=ŷ d̃bij is constant. In partic-

ular, non-ME obtains its global maximal value log(L− 1)
on and only on Sŷ .

Proof. ∀i, j 6= ŷ, we take a hyperplane d̃bij ∈ DBij . Then
according to the definition of the setDBij , it is easily shown
that ∀z ∈ d̃bij , Zpre,i−Zpre,j = constant, and we denote
this corresponding constant as Cij . Thus given any k 6= ŷ,
we derive that ∀z ∈

⋂
i,j 6=ŷ d̃bij

F̂ (z)k =
F (z)k∑
j 6=ŷ F (z)j

=
exp(Zpre,k)∑
j 6=ŷ exp(Zpre,j)

=
1∑

j 6=ŷ exp(Zpre,j − Zpre,k)

=
1∑

j 6=ŷ exp(Cjk)

= constant,

and according to the defination of the non-ME value
non-ME(z) = −

∑
i6=ŷ F̂ (z)i log(F̂ (z)i), we can con-

clude that non-ME(z) = constant,∀z ∈
⋂
i,j 6=ŷ d̃bij .

In particular, according to the property of entropy in in-
formation theory, we know that non-ME ≤ log(L − 1),
and non-ME achieve its maximal value if and only if
∀k 6= ŷ, F̂k = 1

L−1 . In this case, there is ∀i, j 6=
ŷ, Zpre,i = Zpre,j , which is easy to show that the conditions
hold on Sŷ. Conversely, ∀z /∈ Sŷ, there must ∃i, j 6= ŷ,
such that Zpre,i 6= Zpre,j which leads to F̂i 6= F̂j . This vio-
lates the condition of non-ME achieving its maximal value.
Thus non-ME obtains its global maximal value log(L− 1)
on and only on Sŷ .

Theorem 1. In the decision region ddŷ of class ŷ, ∀i, j 6=
ŷ, z0 ∈ ddŷ, there exists a unique d̃b0ij ∈ DBij , such that

z0 ∈ Q0, where Q0 =
⋂
i,j 6=ŷ d̃b

0
ij . Let Qŷ0 = Q0

⋂
ddŷ,

then the solution set of the problem

arg min
z0

( max
z∗∈Qŷ

0

F (z∗)ŷ)

is Sŷ. Furthermore, ∀z0 ∈ Sŷ there is Q0 = Sŷ, and
∀z∗ ∈ Sŷ

⋂
ddŷ , F (z∗)ŷ = 1

L .

Proof. It is easy to show that given a point and a normal
vector, one can uniquely determine a hyperplane. Thus
∀i, j 6= ŷ, z0 ∈ ddŷ , there exists unique d̃b0ij ∈ DBij , such

that z0 ∈
⋂
i,j 6=ŷ d̃b

0
ij = Q0.

According to the proof of Lemma 1, we have ∀i, j 6=
ŷ, z∗ ∈ Qŷ0 , there is Zpre,i − Zpre,j = Cij , and ∃k 6=
ŷ, s. t. Zpre,ŷ = Zpre,k. Thus we can derive

F (z∗)ŷ =
exp(Zpre,ŷ)∑
i exp(Zpre,i)

=
1

1 +
∑
i 6=ŷ exp(Zpre,i − Zpre,ŷ)

=
1

1 + exp(Zpre,k − Zpre,ŷ)(1 +
∑
i 6=ŷ,k exp(Zpre,i − Zpre,k))

=
1

2 +
∑
i 6=ŷ,k exp(Cik)

.

Let M = {i : Cij ≥ 0,∀j 6= ŷ}, there must be k ∈ M so
M is not empty, and we have

max
z∗∈Qŷ

0

F (z∗)ŷ = max
l∈M

1

2 +
∑
i 6=ŷ,l exp(Cil)

=
1

2 + minl∈M
∑
i 6=ŷ,l exp(Cil)

=
1

2 +
∑
i 6=ŷ,k̃ exp(Cik̃)

,

where k̃ is any element in M . This equation holds since
∀k1, k2 ∈M , there is Ck1k2 ≥ 0, Ck2k1 ≥ 0 and Ck1k2 =
−Ck2k1 , which leads to Ck1k2 = Ck2k1 = 0. Therefore,
∀l ∈M ,

∑
i 6=ŷ,l exp(Cil) has the same value.

This equation consequently results in

arg min
z0

( max
z∗∈Qŷ

0

F (z∗)ŷ) = arg min
z0

1

2 +
∑
i 6=ŷ,k̃ exp(Cik̃)

= arg max
z0

∑
i 6=ŷ,k̃

exp(Cik̃).

From the conclusion in Lemma 1, we know that the
value

∑
i 6=ŷ,k̃ exp(Cik̃) obtains its maximum when Cik̃ =

0,∀i 6= ŷ, k̃. Thus the solution set of the above problem
is Sŷ. Furthermore, we have ∀z∗ ∈ Sŷ

⋂
ddŷ, F (z∗)ŷ =

1
2+L−2 = 1

L .
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Theorem 2. Let (x, y) be a given training data. Under
the L∞-norm, if there is a training error α � 1

L that
‖S(Zpre(x, θ

∗
R))−Ry‖∞ ≤ α, then we have bounds

‖S(−Zpre(x, θ∗R))− 1y‖∞ ≤ α(L− 1)2,

and ∀j, k 6= y,

|S(−Zpre(x, θ∗R))j − S(−Zpre(x, θ∗R))k| ≤ 2α2(L− 1)2.

Proof. For simplicity we omit the dependence of the
logits Zpre on the input x and the parameters θ∗R. Let
G = (g1, g2, ..., gL) be the exponential logits, where gi =
exp(Zpre,i). Then from the condition ‖S(Zpre)−Ry‖∞ ≤
α we have


gy∑
i gi
≤ α∣∣∣ gj∑

i gi
− 1

L−1

∣∣∣ ≤ α j 6= y.

Let C =
∑
i gi, we can further write the condition as

{
gy ≤ αC
( 1
L−1 − α)C ≤ gj ≤ ( 1

L−1 + α)C j 6= y.

Then we can have bounds (L ≥ 2)

S(−Zpre)y =

1
gy

1
gy

+
∑
i 6=y

1
gi

=
1

1 +
∑
i 6=y

gy
gi

≥ 1

1 +
∑
i 6=y

αC
( 1
L−1−α)C

=
1

1 + α(L−1)2
1−α(L−1)

= 1− α(L− 1)2

1− α(L− 1) + α(L− 1)2

≥ 1− α(L− 1)2

and ∀j 6= y,

S(−Zpre)j =

1
gj

1
gy

+
∑
i 6=y

1
gi

=

gy
gj

1 +
gy
gj

+
∑
i 6=y,j

gy
gi

≤
gy
gj

1 +
gy
gj

=
1

1 +
gj
gy

≤ 1

1 +
( 1
L−1−α)C
αC

= α(L− 1)

≤ α(L− 1)2.

Then we have proven that ‖S(−Zpre)− 1y‖∞ ≤ α(L−1)2.
Furthermore, we have ∀j, k 6= y,

|S(−Zpre)j − S(−Zpre)k| =

∣∣∣ 1
gj
− 1

gk

∣∣∣
1
gy

+
∑
i 6=y

1
gi

≤
1

( 1
L−1−α)C

− 1
( 1
L−1+α)C

1
αC +

∑
i 6=y

1
( 1
L−1+α)C

=

L−1
1−α(L−1) −

L−1
1+α(L−1)

1
α + (L−1)2

1+α(L−1)

=
2α2(L− 1)2

1 + α(L− 1)2(1− αL)

≤ 2α2(L− 1)2.

B. Additional Experiments
B.1. Training Settings

We apply the same hyperparameters when training Resnet
networks via the CE and RCE. The optimizer is SGD with
momentum, and the mini-batch size is 128. The weight
decay is 0.0002, the leakiness of Relu is 0.1.

On MNIST the training steps are 20,000, with piecewise
learning rate as

steps:[10, 000, 15, 000, 20, 000],

lr:[0.1, 0.01, 0.001, 0.0001].

Each training image pixel values are scaled to be in the
interval [−0.5, 0.5].
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On CIFAR-10 the training steps are 90,000, with piecewise
learning rate as

steps:[40, 000, 60, 000, 80, 000],

lr:[0.1, 0.01, 0.001, 0.0001].

The training set is augmented by two ways as

• Resizing images to 40 × 40 × 3 and then randomly
cropping them back to 32× 32× 3.

• Randomly flipping images along their second dimen-
sion, which is width.

After augmentation each training image pixel values are
also scaled to be in the interval [−0.5, 0.5].

B.2. Time Costs on Crafting Adversarial Examples

Our experiments are done on NVIDIA Tesla P100 GPUs.
We set the binary search steps to be 9 and the maximal itera-
tion steps to be 10,000 in C&W-family attacks (i.e., C&W,
C&W-hc and C&W-wb), which promises large enough
searching capacity for these attacks. We set the maximal
iteration steps to be 100 for JSMA, which means that JSMA
perturbs at most 100 pixels on each image. Table 5 demon-
strates the average time costs on crafting each adversarial
example via different attacks. We can find that C&W-family
attacks are extremely time consuming compared to other it-
erative methods. Furthermore, C&W-family attacks usually
take longer time to attack the networks trained by the RCE
than those trained by the CE.

Table 5. The average time costs (s) on crafting each adversarial
example via different attacks. The values are also the average
values between MNIST and CIFAR-10. The models is Resnet-32.

Attack Objective Time

FGSM CE ∼ 1.9× 10−3

RCE ∼ 2.4× 10−3

BIM CE ∼ 3.3× 10−3

RCE ∼ 3.6× 10−3

ILCM CE ∼ 4.1× 10−3

RCE ∼ 4.3× 10−3

JSMA CE ∼ 2.9× 101

RCE ∼ 2.0× 101

C&W CE ∼ 4.5× 101

RCE ∼ 5.5× 101

C&W-hc CE ∼ 6.5× 101

RCE ∼ 1.1× 102

C&W-wb CE ∼ 7.0× 102

RCE ∼ 1.3× 103

B.3. Robustness to Noisy Examples

For more complete analysis, we investigate whether our
method can distinguish between noisy examples and ad-
versarial examples. The noisy examples (RAND) here are

defined as
x∗ = x+ U(−ε, ε)

where U(−ε, ε) denotes an element-wise distribution on the
interval [−ε, ε]. Fig. 5 gives the classification error rates on
the test set of CIFAR-10, where εRAND = 0.04. We find
that the networks trained by both the CE and RCE are robust
to noisy examples in the sense of having low error rates.
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Figure 5. Classification error rates on CIFAR-10. Two panels sep-
arately show the results when the networks are trained via the CE
and RCE. The models is Resnet-32.

Furthermore, in Fig. 6 and Fig. 7, we show the number of
images w.r.t. the values of K-density under various attacks,
also on normal and noisy examples. We work on 1,000 test
images of CIFAR-10, and our baseline is the kernel density
estimate method (CE as the objective and K-density as the
metric). We can see that the baseline returns quite differ-
ent distributions on K-density between normal and noisy
examples, and it cannot distinguish noisy examples from
the adversarial ones crafted by, e.g., JSMA and C&W-hc,
as shown in Fig. 6. In comparison, our method (RCE as the
objective and K-density as the metric) returns similar distri-
butions on K-density between normal and noisy examples,
and noisy examples can be easily distinguished from other
adversarial ones, as shown in Fig. 7.

B.4. The Limitation of C&W-wb

When we apply the C&W-wb attack, the parameter κ is set
to be 0. This makes C&W-wb succeed to fool the K-density
detector but fail to fool the confidence metric. Thus we
construct a high-confidence version of C&W-wb, where
we set κ be 5. However, none of the crafted adversarial
examples can have f2(x∗) ≤ 0, as shown in Table 6. This
means that it is difficult for C&W-wb to simultaneously fool
both the confidence and the K-density metrics.

Table 6. The ratios (%) of f2(x∗) > 0 of the adversarial examples
crafted by the high-confidence version of C&W-wb on MNIST and
CIFAR-10. The model is Resnet-32 and the metric is K-density.

Objective MNIST CIFAR-10
CE 100 100

RCE 100 100
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Figure 6. Number of images w.r.t. K-density. The target networks are trained by the CE.
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Figure 7. Number of images w.r.t. K-density. The target networks are trained by the RCE.
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