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Abstract

Recent technical advance attracts great attention to the promotion of programming skills, in particular, and computational
thinking (CT), in general, as a new intellectual competency. However, the understanding of its cognitive substrates is
limited. The present study used functional magnetic resonance imaging to examine the neural correlates of programming
to understand the cognitive substrates of CT. Specifically, magnetic resonance imaging signals were collected while the
participants were mentally solving programming problems, and we found that CT recruited distributed cortical regions,
including the posterior parietal cortex, the medial frontal cortex, and the left lateral frontal cortex. These regions showed
extensive univariate and multivariate resemblance with arithmetic, reasoning, and spatial cognition tasks. Based on the
resemblance, clustering analyses revealed that cortical regions involved in CT can be divided into Reasoning, Calculation,
Visuospatial, and Shared components. Further, connectivity increased during programming within the CT network
constructed by these four components and decreased between the CT network and other cortical regions. In sum, our study
revealed the cognitive components underlying CT and their neural correlates and further suggests that CT is not a simple
sum of parallel cognitive processes, but a composite cognitive process integrating a set of intellectual abilities, particularly
those in the science, technology, engineering, and math domains.
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Introduction
In recent years, computer science plays an increasingly critical
and ubiquitous role in human life. It brings one of the most
significant challenges to human intelligence in our time, that
is, to adopt to and make the best use of these new advances
of computer science and the vast amount of information gen-
erated by the newly acquired computational power. The ability
to do so has been deemed of great value nowadays, and the
efficient training and evaluating becomes a great need of soci-
ety. Specifically, the growing educational need underscores the
urgency in characterizing the cognitive and neural mechanisms

behind the acquisition and use of computational techniques and
computer programming skills. Initially, the concept of computa-
tional thinking (CT) is proposed as mental skills and thinking
habits that people develop through their work in computing
disciplines, such as programming (Papert 1990; Tedre and Den-
ning 2016), or a synthesis of cognitive abilities in problem-
solving processes that drive programming skills (Denning 2017).
A less concentrated view of CT weakens the link between CT
and programming tasks and disciplines, but defines CT as a
cross-disciplinary literacy that is widely required in science,
technology, engineering, and math (STEM) disciplines and daily
life (Mannila et al. 2014; Weintrop et al. 2016). For instance, CT
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is surmised as the ability to “think like a computer scientist”
(Wing 2006), referring to solving problems, designing systems,
and understanding human behavior by drawing on concepts
that are fundamental in computer science (Wing 2006). It is
considered to include (but not limited to): formulating problems
for computational solutions, logically organizing and analyzing
data, abstractions including models and simulations, algorith-
mic thinking, evaluation for efficiency and correctness, and
generalizing and transferring to other domains (CSTA and ISTE
2011). Admittedly, in contrast to the increased attention that CT
receives in the field of education and cognitive sciences, there
still lacks an empirically proven consensus on a formal generic
definition of CT (Grover et al. 2014; Kalelioglu et al. 2016), and
the cognitive substrates of CT are also not clear. As many other
core competencies, such as reading, writing and arithmetic, CT
is a product of an adaptation to human civilization. Therefore,
it is unlikely that a new cognitive module would emerge for this
newly arising challenge; rather, CT presumably arises from the
recruitment, adaptation, or even integration of phylogenetically
older cognitive abilities. Indeed, several cognitive components
of CT, such as abstraction and automation, decomposition, algo-
rithmic thinking, and representing data as models and simu-
lations have been proposed based on theoretical consideration
(e.g., Wing 2006, 2008; CSTA and ISTE 2011); however, these intu-
itions lack empirical evidence, and it is unclear how these cog-
nitive components are integrated as a cohesive unity. Therefore,
the application of CT is largely limited in practice.

A most representative task for CT is programming, which
has started to be included in school curriculum in countries
across Europe, Asia, and North and South America (Fedorenko
et al. 2019), and efforts have been made to understand the
neural and cognitive correlates of programming. For instance,
behavioral and neuroimaging correlation analyses have revealed
that the behavioral performance of code review is correlated
with the capacity and neural correlates of working memory (Crk
et al. 2016; Yeh et al. 2017; Baum et al. 2019). Further, functional
magnetic resonance imaging (fMRI) studies on code review and
comprehension have identified the involvement of distributed
cortical regions, including the inferior and the middle frontal
gyri, the middle temporal gyrus, the lateral occipital regions, and
the inferior parietal lobule, which are typically associated with
language processing, high-level visual processing and reasoning
(Prabhakaran et al. 1997; Fedorenko and Thompson-Schill 2014;
Hobeika et al. 2016) as well as the insula and the medial frontal
cortex (Duraes et al. 2016; Castelhano et al. 2019), which are
typically associated with error monitoring (Sharp et al. 2010;
Bastin et al. 2016). However, programming is a complex cognitive
task (Dalbey and Linn 1985), and yet most existing studies focus
on the comprehension stage of programming, such as code
comprehension or code review, which reflects the mastery or
proficiency of particular coding language or syntax, but may
not fully address one of the main functions of programming,
that is, using it as a tool for problem-solving. The present study,
therefore, intended to investigate the neural correlates of pro-
gramming using a task relying more on its problem-solving and
algorithm generation aspects.

Specifically, the present study adopted a set of simple
programming problems from programming training, and
participants equipped with basic programming skills mentally
solved these problems in the scanner (Fig. 1). Besides, four
benchmark tasks on cognitive processes that may underlie CT,
that is, language, arithmetic, reasoning, and spatial cognition,
chosen based on previous theoretical proposals, were also

included (Fig. 2). The language ability was examined because of
its hypothetic relation to programming (Fedorenko et al. 2019) as
suggested by the association between the language abilities and
programming practice or the master of programming language
(Peppler and Warschauer 2011; Kazakoff and Bers 2014) and
the activation of language-related cortical regions during code
comprehension (Siegmund et al. 2014). The arithmetic task was
chosen as one representational aspect of the STEM disciplines
that computer programming is presumably associated with
(Fedorenko et al. 2019). The spatial cognition task was chosen
as another representative aspect of the STEM disciplines, and
it has been suggested related to CT (Roman-Gonzalez et al.
2017). Finally, programming has frequently been discussed in
the framework of reasoning and problem-solving theoretically
(Dalbey and Linn 1985; Fedorenko et al. 2019), which is
confirmed by a recent psychometrical study (Roman-Gonzalez
et al. 2017). With the neural correlates of these four tasks as
benchmarks, we investigated the cognitive substrates of CT
and its potential underlying cognitive components with both
univariate activation and multi-variate pattern analyses. We
exploratorily identified functional modules from the neural
correlates of programming with a data-driven clustering
analysis. We reasoned that if such functionally dissociable
modules had existed, their activation profiles and pattern
similarity profiles would have varied across the experimental
tasks. Then, with functional connectivity analysis among these
underlying modules, we examined how they are integrated to
form a cohesive unity of CT.

Besides the domain-specific functions, some domain-
general cognitive functions, such as working memory, executive
control, and decision-making, may also be recruited for CT.
For instance, CT performance has been found to correlate
with working memory (Ambrósio et al. 2014), and the above-
mentioned studies on code review have also suggested the
involvement of working memory and executive control in that
representative CT task. In addition, decision-making has been
proposed relevant to CT in line with the theoretical proposal
of evaluation, one of the core components of CT that refers
to the finding of the best solution for making decisions about
good use of resources (CSTA and ISTE 2011; Selby and Woollard
2013). Nevertheless, because the domain-general functions are
recruited in many tasks unrelated to CT, here, we focused on the
domain-specific functions that are closely related to CT.

Materials and Methods
Participants

Twenty participants (right-handed neurologically normal vol-
unteers with normal or corrected-to-normal vision) completed
the experiment; another two were initially recruited but failed
to complete the experiment and therefore were not included
in the analysis. The participants were screened before recruit-
ment to ensure they either had taken programming-related
courses or had experience in programming. The targeted sample
size (20 valid participants) was decided a priori to be sim-
ilar to previous studies using similar benchmark tasks (e.g.,
Fedorenko et al. 2012, n = 13–16; Zhou et al. 2018, n = 24; Amalric
and Dehaene 2016, n = 15), and participant recruitment stopped
immediately after the targeted sample size was meet. The study
was approved by the Institutional Review Board of Beijing Nor-
mal University (BNU). Written informed consent was obtained
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Neural Correlates of Computational Thinking Xu et al. 3

Figure 1. The illustration of the programming task. (a) The English translation of two examples of the programming items (left) and the control items (right). (b) The
procedure of the scanning session (bottom) and the examples of the programming condition (upper left) and its control condition (upper right). From top to bottom,
the three screens in each gray frame are the task probe, the programming item, and the response prompt, respectively. Both types of trials started with a task probe
for 2 s, followed by the programming item for 28 s and the response prompt for 4 s.

from all participants before they took part in the experiment,
and the participants received money for their time.

Procedure

The trial sequences of the experimental tasks were generated
and presented using Matlab R2016b (The MathWorks Inc.) with
Psychtoolbox 3. Each participant participated in five tasks, con-
sisting of one core task, the programming task, and four bench-
mark tasks (see below for details) in the scanner, and filled a
short questionnaire about their educational and practical expe-
rience in programming after they completed the programming
task. The tasks were divided into three scanning sessions con-
ducted on three separate days. The order of the five tasks was

not counterbalanced across subjects. For each task, the partici-
pants received instruction, got familiar with the requirement of
each condition, and completed a practice run before entering the
scanner.

Programming
The materials used in the programming condition of the pro-
gramming task consisted of 24 programming problems adopted
from elementary practice problems of International Olympiad
Informatics and other advanced programming competitions for
secondary school students. We collected the original problems
from the Internet, translated those originally presented in
English into Chinese, removed those containing graphs, figures
and chunky codes or long paragraphs, and shortened and

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab182/6319932 by guest on 10 O

ctober 2021



4 Cerebral Cortex, 2021, Vol. 00, No. 00

Figure 2. The illustration of trials of the four benchmark tasks: language (a), reasoning (b), arithmetic (c), and spatial cognition (d) tasks. The translation of the task
probes of the reasoning and arithmetic tasks were denoted in quotation marks.

reformatted each of the remaining problems into a one-to-three-
line introductory statement, a programming probe (“Please
design a program with:”), a one-line statement specifying the
potential input, and a one-line statement describing the desired
output. For the control condition, we generated knowledge
entries with the length, the format, and the use of symbols
matched with the materials of the programming condition. Each
entry started with a one-to-three-line introductory statement,
followed by a brief conjunctive clause (e.g., “in other words”), and
two one-to-two-line deliberations of the concept introduced in
the introductory statement. The items were presented at the
center of a light gray (204, 204, 204 RGB) background subtended

18.7◦ × 18.7◦ of visual angle. Other stimuli included a fixation
cross subtending 0.6◦ × 0.6◦ of visual angle, two task probes
subtended 18.7◦ × 18.7◦ of visual angle, and two responses
prompt subtended 18.7◦ × 18.7◦ of visual angle (see Fig. 1 for an
example item of each condition and their English translation).

The programming task was conducted in the scanner, divided
into six runs, each with four trials in the programming condition
and four in the control condition. Pairs of trials of the same
condition interleaved with trials in the other condition in an
ABBA manner. The trial order in a given run was identical across
subjects, but the run order was balanced across participants. For
half of the participants, the odd number runs started with a pair
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Neural Correlates of Computational Thinking Xu et al. 5

of programming condition trials and the rest runs control trials,
while the other half went through the six runs in the reversed
order. The programming trials started with a programming task
probe, 2 s presentation of “report progress” on a light green
(197, 224, 181 RGB) background. In these trials, the participants
were to read and consider the programming problem in the
following 28 s and wait for the response prompt (“Please select
the most appropriate statement”) and choose from a four-point
scale to report their progress in programming. The scale was
presented under the prompt, ranging from “1: Have not finished
reading or do not understand” to “4: Ready with a solution.” The
participants were required to press a corresponding key of the
response boxes held in their hands to indicate their choice. They
were instructed before the scanning that for programming they
should consider at the algorithm level instead of specific code,
and the solution of the problem means finding the algorithm
instead of finishing the coding. The response prompt and the
scale would remain presented for 4 s. The control trials started
with the control task probe which read “report familiarity” on
a light blue (189, 215, 238 RGB) background. In these trials, the
participants were to read and consider whether they are familiar
with the content of the knowledge entry in the following 28 s
and wait for the response prompt and choose from a four-
point scale ranging from “1: I have not finished reading or do
not understand” to “4: I am familiar with all the information
in the statement” (see Fig. 1 for the trial procedure as well as
example materials). At the beginning and the end of each run,
as well as between the fourth and the fifth trials of each run,
16-s null events were inserted during which only the fixation
cross was presented. After the scan, we invited the participants
to a debriefing session in which they were shown with a set of
the tested items again and were required to immediately report
their thoughts in solving this problem and the solution they had
come up with during the scan. All the participants passed this
debriefing by reporting reasonable solutions, or signs of heading
toward them, without further consideration.

The Language Task
The language task was adopted from Fedorenko et al. (2010), but
with materials (i.e., sentences and pseudo-characters) in Man-
darin Chinese. Each participant completed four block-design
functional runs. Each run contained three blocks of sentences
and three blocks of strings of Chinese pseudo-characters, which
were visually presented and separated by seven fixation blocks.
For three participants, each fixation block lasted for 12 s and, for
the rest, 16 s. The pseudo-characters were constructed of com-
ponents of real characters, but they had no meaning or phonol-
ogy of their own. Each block lasted for 30 s and consisted of six
trials. Each trial contained one sentence that was formed by a
string of seven Chinese real words or seven pseudo-characters,
which were followed by a target word or pseudo-character. Par-
ticipants were instructed to decide whether the target word or
pseudo-character appeared in the preceding sentence or string
of pseudo-characters and responded by pressing certain buttons
(for more details on the paradigm, see Xu et al. 2015). Trials with
pseudo-word stimuli were the control condition of this task.

The Arithmetic Task
The arithmetic task was adopted from Fedorenko et al. (2010)
with an additional control condition. Each participant com-
pleted four blocked-design functional runs. In the arithmetic
trials, the participants first see a task probe (“Do the addition”

on light-green background) presented for 1.5 s, then after a 0.5-s
ISI with the fixation cross on the screen, they see one number
(11–30) followed by three sequentially presented addends (of
sizes 2–4 in half of the trials and 6–8 in the rest. The two kinds
of trials were not differentiated in the analysis.) on light-gray
background. Then the participants had to choose the correct
sum in a two-choice, forced-choice question. After a response
was made, brief feedback was shown on the screen to tell the
participants whether they answered correctly. In the control
trials, after the task probe (“Memorize the numbers” on light-
blue background) and the same sequential presentation of four
numbers, the participants were to select, from two alternatives,
the one among the four preceding numbers. The trials were
grouped into four-trial blocks. Each run consisted of six 40-s cal-
culation blocks and six 40-s control blocks. For five participants,
two 16-s null events were added in the beginning and after the
ninth block of each run, for the rest of the participants, three 16-
s null events were added at the beginning, the end, and after the
sixth trial of the run. The order of the trials within each run was
pseudo-randomized to balance the frequency of the numbers
and correct choices. This order was kept identical across the
participants.

The Raven Reasoning Task
Each participant completed five functional runs. The task con-
sisted of a reasoning condition adopted from Raven’s APM and a
control condition. In both conditions, the participants first saw
a problem with a complex main figure, with a blank space in its
right bottom corner. Below it were eight choices. The problems
of the reasoning trials were chosen from Raven’s APM (problems
3–12 of set 1 and problems 23, 24, 27–30, 32–34, and 36 of set
2). The problems of the control condition were composed by
rearranging the choices of other Raven’s APM items in the main
figure and the choices in each problem. Above each problem,
a task probe would be presented to indicate whether it is a
reasoning trial (“Look for the rule” on a green background) or
a control trial (“Look for the choices” on a fuchsia background).
The participants were to consider which choice complies with
the rule of figure arrangement and completes the main pattern
(the reasoning condition), or to consider which choice was pre-
sented in the main pattern (the control condition). After 26 s,
one of the choices would be highlighted by a red frame, and the
participants were instructed to report whether this choice was
the correct one within 3 s, then the next trial started after a 1-
s ISI. Each run consisted of eight trials. Three 16-s null events
were added in the beginning, the end, and after the fourth trial of
the run. The order of the trials within each run was randomized
and kept identical across participants. The order of conditions
was similarly balanced within and across the runs as in the
programming task. The order of runs was balanced between
participants in the same manner as in the programming task.

The Surface Development Task
The surface development (SD) task was adopted from the mental
folding task of Milivojevic et al. (2003). The task consisted of a
SD condition and a control condition. In each trial, the partici-
pants were shown a black outline of six squares joined together,
representing the faces of an unfolded cube. Two small arrows
pointed to two of the sides of a square. In half of the trials,
that is, the “match” trials, the pointed sides would meet if the
squares were folded up into a cube. Trials in the SD and the con-
trol conditions differed in the total number of squares carried
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along for each fold in order for the match–mismatch decision to
be made. The control trials presented 1-square-carried stimuli
since judgment of such stimuli can be made without mental
folding (see Milivojevic et al. 2003 for more details). Each trial
would present the outline stimuli for 6 s, followed by a 2 s blank
screen, and the participants were instructed to indicate their
judgment by pressing one of two buttons of the response box.
The order of the trials within each run was pseudo-randomized
and was kept identical across participants. Every four trials of
the same condition would be grouped into a block, and the order
of blocks was balanced in each run in the ABBA manner. For
three participants, a 16-s null event was inserted before and
after every block, while for the rest, the null events were inserted
before and after every two blocks. The order of conditions within
runs and the order of runs were balanced in the same manner
as in the programming task. Each participant completed five or
six block-design functional runs.

fMRI Data Acquisition

fMRI data were acquired using a Siemens 3T scanner (MAGEN-
TOM Trio, a Tim system) with a 12-channel phased-array
head coil at the Beijing Normal University Imaging Center
for Brain Research, Beijing, China. Task-state fMRI (ts-fMRI)
was acquired using a T2∗-weighted echo-planar-imaging (EPI)
sequence with a whole-brain protocol (TR = 2000 ms, TE = 30 ms,
flip angle = 90◦, and in-plane resolution = 3.1 × 3.1 × 3.5 mm, 33
contiguous interleaved slices). In addition, high-resolution T1-
weighted images were acquired with a magnetization-prepared
GRE sequence (MPRAGE: TR/TE/TI = 2530/3.39/1100 ms, flip
angle = 7◦, matrix = 256 × 256) for spatial registration. Earplugs
were used to attenuate the scanner noise, and a foam pillow
and extendable padded head clamps were used to restrain head
motion. We also collected resting-state fMRI data, which were
not analyzed in the present study. All the stimuli were projected
onto a screen at the back of the scanner and were viewed from
a distance of approximately 110 cm via a mirror placed on the
head coil.

fMRI Data Analysis

Data preprocessing was performed with DPABI (Yan et al. 2016,
http://rfmri.org/dpabi). The main preprocessing procedure was
as follows: 1) transformation of DICOM files into NIFTI images, 2)
slice timing, 3) head motion correction, 4) co-registration of the
high-resolution T1-weighted structural images to the functional
images, 5) segmentation, 6) spatial normalization to standard
Montreal Neurological Institute (MNI) space, and resampling
to 3 × 3 × 3 mm isotropic voxels, and 7) smoothing with a 4-
mm full-width-half-maximum Gaussian kernel for univariate
activation analysis. For multiple regression of activation pattern,
we did not include smoothing in the preprocessing pipeline. We
excluded runs with excessive head movement (>2 mm in any
direction across a run) from further analysis.

The data of each task were analyzed separately. The data
were modeled at the individual level with regressors for
each condition (corresponding task and control conditions
of each task) using SPM8 (Wellcome Department of Imaging
Neuroscience, London; www.fil.ion.ucl.ac.uk/spm). For the
programming task, additional regressors were added for the
response prompt and the task probe; for the arithmetic task,
an additional regressor was included for the task probe; and
for the reasoning task, an addition regressor was included for

the response prompt. The repressors were convolved with the
canonical hemodynamic response function (HRF). A 1/128 Hz
high-pass filter was applied to remove low-frequency noise,
with the AR(1) model used to account for serial correlations.

To estimate the scope of activation change associated
with programming, we calculated the first-level and then the
group-level contrast of the programming condition versus its
control condition. Both first-level and group-level analyses were
conducted using SPM8 within a gray matter mask. The mask
was derived from the bilateral gray matter atlas of WFU Pickatlas
(http://www.fmri.wfubmc.edu; Advanced Neuroscience Imaging
Research Core, Wake Forest University) with one-voxel 2D
dilution. The activation was similarly calculated for the four
benchmark tasks. The group-level activation map of each task
was thresholded by a voxel-level threshold at P = 10−3 and by
a cluster-level extent threshold based on Alphasim at P = 0.05.
Dice coefficients, the ratio of twice the number of overlapping
voxels from two different thresholded maps divided by the sum
of the total number of voxels in the two thresholded maps,
were calculated between the thresholded activation map of
programming with those of each benchmark task to illustrate
the corresponding extent of activation overlap.

Multiple Regression of Activation Pattern

Besides the univariate analysis of activation, we compared the
activation patterns in the programming task and the bench-
mark tasks with multiple regression in a searchlight manner.
Particularly, for the programming task and for each of the three
benchmark tasks, we extracted the voxel-wise activation pattern
of each task from the t maps of the corresponding task versus
control contrasts in a given searchlight cube (5 × 5 × 5 voxels),
transformed the activation pattern into a vector, and used the
vector of the programming task as the dependent variable, and
those of the arithmetic, the Raven reasoning, and the SD tasks as
independent variables (Fig. 3). Then, we examined the resultant
regression significance as well as the standardized regression
coefficients of each task on the coordinate of the central voxel of
the searchlight cube. In this way, by moving the searchlight cube
around, we generated a map of cortical regions where the local
activation pattern in the programming task can be significantly
predicted by that of the three benchmark tasks and the maps
of standardized regression coefficients for each regressor which
indicate the unique contribution of each benchmark task in
predicting the local activation pattern of the programming task.
The searchlight analysis was constrained within the gray-matter
mask, and cubes with less than 80 voxels within the gray matter
mask were excluded. Each map was further thresholded with
FDR correction for multiple comparison with q = 0.05. We also
calculated the Dice coefficients between the pattern resem-
blance maps of the three benchmark tasks to illustrate the cor-
responding extent of overlap. We did not include the language
task in the multiple regression analysis, as well as the activation
and regression profile analyses (see below), simply because it
showed little activation overlap with the programming task in
the brain.

Analysis of Activation Profile and Regression Profile

To investigate the functional role of different brain regions acti-
vated during programming, we conducted voxel-wise clustering
of activation and regression profiles across all the voxels (n = 756)
within the thresholded activation map of the programming task
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Neural Correlates of Computational Thinking Xu et al. 7

Figure 3. Illustration of the multiple regression analysis of local activation pattern.

and with their regression coefficients estimated in the multiple
regression analysis. Across these voxels, we standardized the
activation value for each task included in the multiple regres-
sion analysis, formed a standardized activation profile vector
for each voxel, then concatenated its standardized activation
profile and its regression profile (consisting of the standardized
regression coefficients of each benchmark tasks), and subjected
the resultant activation-regression vectors of all the voxels into
k-means clustering with k = 4, the distance metric being the
squared Euclidean distance between the activation-regression
vectors. The clustering was repeated five times with new initial
cluster centroid positions, and the reported solution was the
one with the lowest within-cluster sums of point to centroid
distances.

The k value was chosen by a cross-validation approach based
on stability analysis (Lange et al. 2004) before the clustering
analysis. We divided the voxels randomly into a training group
and a validation group, did clustering analysis with each group
separately with a range of k value between 2 and 8, examined the
stability between the clustering analysis of the same k values,
and repeated such random division and stability calculation
for 40 times. For each repetition, the validation voxels will be
assigned to the training-group cluster with a centroid nearest to

this voxel, and the (dis)agreement of this assignment with the
assignment based on validation-group clustering was indicated
by the proportion of voxels of mismatched assignments. The
instability for each k value can be illustrated by the average
(dis)agreement across repetitions divided by the chance level
(dis)agreement of the same k value. The k value minimizing the
instability index was chosen for the formal clustering analysis
including all the voxels.

Functional Connectivity Analysis

To examine the potential functional dissociation between the
components identified in the k-means analysis, we examined
the functional connectivity among the components (we term
these brain regions collectively as the programming network)
and that between each of the components with regions out of
this network and compared the effect of task state on them
during the programming task. More specifically, we used the
four k-means components as seed ROIs. For each of them,
we extracted and averaged the corresponding seed-to-voxel
functional connectivity with the voxels in the other three
seed ROIs as this ROI’s In connectivity, and the seed-to-voxel
functional connectivity with all the gray-matter voxels not
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belonging to any seed ROIs as this ROI’s Out connectivity.
Task-dependent functional connectivity was estimated for
each participants using the generalized psychophysiological
interaction (gPPI) method (McLaren et al. 2012) using CONN
toolbox (Whitfield-Gabrieli and Nieto-Castanon 2012), an
open-source MATLAB-based cross-platform software for the
analysis of functional connectivity, to measure the task-induced
connectivity differences without the impact from the task-
activation effects and non-task-specific correlations. In gPPI
analysis, the general linear model (GLM) contains condition-
specific task regressors, “seed” time-course regressors, and
separate condition-specific interaction regressors. The inter-
action regressors predict correlation with the seed region signal
during time points belonging to specific experimental condition
and were used as the index of the corresponding functional
connectivity. Our GLMs included condition-specific regressors
for the programming condition and its control condition in
addition to the task regressors of no interest for fixation,
response, and response prompt presentation. We submitted
the In and Out connectivity of each k-means component in
the two experimental conditions of interest into a repeated-
measure ANOVA with seed component, task state (programming
vs. control), and network (In vs. Out) as independent factors.
We were particularly interested in the interaction between
network and task and whether this interaction, if significant,
was modulated by the seed component.

Results
Neural Correlates of CT and Its Relation with
Benchmark Cognitive Processes

To identify the regions involved in CT, we calculated the group-
level contrast of the programming condition versus the control
condition within the gray matter mask. This contrast revealed
a left-lateralized network of CT-related regions in the lateral
and medial cortex of the brain (Fig. 4a), spanning from the
parietal to the frontal lobes (Puncorrected < 0.001, corrected by
Alphasim at P = 0.05). Specifically, in the parietal lobe, we found
left-lateralized activation at the inferior parietal lobule, and in
the frontal lobe, activation can be observed covering the bilateral
middle frontal gyrus, the bilateral superior frontal gyrus, the
medial part of the left superior frontal gyrus, and the triangular
part of the left inferior frontal gyrus. See Table 1 for a full list.

The group-level activations were calculated and thresholded
following the same approach for the four benchmark tasks
(Puncorrected < 0.001, corrected by Alphasim at P = 0.05). Figure 4b
shows that there was little overlap of activation between the
programming and the language processing, except there were
five voxels in the left inferior parietal lobule. By contrast, there
was substantial overlap of activation between programming and
each of the three benchmark tasks (arithmetic, Raven reasoning,
and SD), respectively (Fig. 4c). Visual inspection reveals that the
overlap of activation between programming and these three
tasks was most noticeable in the bilateral inferior parietal cortex,
the left middle and superior frontal gyri as well as the medial
part of the left superior frontal gyrus. Table 2 shows the acti-
vation overlap between the programming task and each of the
benchmark tasks. Dice coefficients further showed that the over-
lap was the largest with Raven Reasoning and the smallest with
the language task (Fig. 4d). Besides, there were clusters activated
only in the programming task but not in the benchmark tasks,
which were mainly located in the bilateral middle and superior

frontal gyri, the bilateral inferior parietal lobule, and the caudate
(Table 3).

One may argue that univariate activation might not be sen-
sitive to certain functional dissociation between tasks as dif-
ferent processes may activate the same region (e.g., Duncan
2010); therefore, we further used multivariate pattern analysis to
examine the relation of programming to the benchmark tasks.
To do this, we extracted the voxel-wise activation pattern from
the searchlight cubes (5 × 5 × 5 voxels) in the group-level t map
of the programming task and each of the three benchmark tasks,
except the language task that showed little overlap with the pro-
gramming task. Then, the activation pattern of the programming
task was treated as the dependent variable and those of the
three tasks as independent variables. The regression analysis
revealed extensive cortical regions where the activation pattern
of the programming task can be predicted by the activation
patterns of at least one benchmark task within the regions
activated by the programming task (Fig. 5b). Similar to the uni-
variate activation analysis, the region where the coefficients of
a specific benchmark task reached significance substantially
overlapped, as reflected by the Venn diagram (Fig. 5c) and Dice
coefficients (Fig. 5d). These regions include parts of the bilateral
inferior parietal lobule, the bilateral superior and middle frontal
gyri, and the left inferior frontal gyrus (Table 4). Taken together,
programming recruited cortical regions involved in arithmetic,
reasoning, and spatial cognition.

Component Processes Underlying Programming

To further disentangle the functional involvement of different
cortical regions activated during CT, here, we examined the
functional properties of each CT-related cortical region during
the programming task. Because the univariate and multivariate
analyses revealed shared but also separate regions, both acti-
vation magnitude and pattern were included in the clustering
analysis. Specifically, we conducted a voxel-wise k-means clus-
tering analysis to explore the underlining functional compo-
nents shared across clusters by combining the activation profile
and the pattern profile. For each voxel in the intersection of the
activation map of the programming task and the regression map
shown in Figures 4a and 5, we concatenated its standardized
activation profile and the standardized regression coefficients
and subjected the resultant activation-regression vectors into
k-means clustering with k = 4, which was chosen by a cross-
validation approach based on stability analysis (Lange et al. 2004,
see Figure 6a for the results of the stability analysis). Among the
four resultant components, the first one was mostly observed in
the left medial frontal regions extending to the middle cingulate
gyrus, the left premotor, the left middle frontal gyrus in and
around BA 46 as well as small clusters in the left posterior
parietal cortex. This component showed relatively high activa-
tion during programming and all the three nonverbal bench-
mark tasks, therefore was termed as the “Shared” component.
Besides, this component also showed relatively high pattern
similarity between programming and the spatial cognition task.
The second component showed high pattern similarity between
the programming and the arithmetic tasks, and was therefore
coined as the “Calculation” component. The voxels belonging
to this component mostly exist in the bilateral inferior parietal
sulcus and in the bilateral dorsal lateral prefrontal cortex in and
around BA 6 and BA 8. Besides, this component also showed
overall high activation in all three benchmark tasks. The third
component showed selective activation and pattern similarity
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Neural Correlates of Computational Thinking Xu et al. 9

Figure 4. (a) Group-level activation map of programming. The colors denote the t values of the group level contrast between programming and its control condition.
(b) Overlap of group-level activation between programming and language. (c) Overlap of group-level activation between programming and the rest of the benchmark

tasks, including reasoning, arithmetic, and spatial cognition. (d) The Dice coefficient between each of the benchmark tasks with programming. The activation maps
were thresholded with Puncorrected < 0.001 and Alphasim corrected at P = 0.05.

in programming and reasoning, and was therefore labeled as a
“Reasoning” component. The voxels belonging to this compo-
nent can be found in the left middle and superior frontal gyri
and the left inferior parietal lobule. The fourth is a “Visuospatial”
component because it showed high pattern similarity between
the programming and the spatial cognition tasks as well as
high selective activation in the spatial cognition task. Voxels
belonging to this component were observed in the bilateral
frontal regions, and this component dominated the caudate and
the left precuneus clusters activated during programming.

Another illustration of the dissociation between CT’s com-
ponents is their neighboring but dissociable presence in two
high-level cortical regions, the left lateral frontal cortex and
the left inferior parietal cortex (Fig. 7). The left lateral frontal
cortex contains voxels of all four components, with the Visu-
ospatial component observed in the superior frontal gyrus in BA
6 and in the left inferior frontal gyrus in BA 46; the Reasoning

component can be observed in the frontal middle gyrus and
the ventral part of the superior frontal gyrus, between the two
patches of the Visuospatial component in this region. Voxels
of the Calculation component and the major part of a cluster
of the Shared component can be observed posterior to the
Reasoning component in the superior frontal sulcus, near its
conjunction with the precentral sulcus. Another cluster of the
Shared component was observed posterior to the ventral cluster
of the Visuospatial component in BA 46. The Visuospatial and
the Shared components were also observed in the right superior
frontal gyrus. Another cortical region occupied by multiple com-
ponents is the left inferior parietal cortex, where the activation
during programming can be observed along the left intraparietal
sulcus, with the Calculation component taking the lower bank
of the intraparietal sulcus. Ventral to it are voxels of the Shared
component and of the Reasoning component, extending to the
angular gyrus. Within the right inferior parietal regions activated
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Table 1 Regions showing increased activation during the programming versus the control condition, Puncorrected < 0.001, Alphasim corrected at
P = 0.05

Hemisphere Region MNI coordinates Z score Volume (mm3)

x y z

Left The middle
frontal gyrus

−24 15 48 5.72 4833

The superior
frontal gyrus,
medial

−9 24 39 4.69 3672

The superior
frontal gyrus

−21 15 48 4.97 1728

The inferior
parietal lobule

−51 −39 45 4.91 9045

The inferior
frontal gyrus

−45 39 21 4.67 1701

The caudate −15 12 9 4.01 1296
The precuneus −9 −66 45 4.18 945

Right The inferior
parietal lobule

51 −42 45 4.15 1512

The right middle
frontal gyrus

30 18 45 3.55 1350

The right superior
frontal gyrus

24 24 57 3.94 486

Table 2 The overlap of activation between the programming task and each of the benchmark tasks, Puncorrected < 0.001, Alphasim corrected at
P = 0.05

Benchmark task Region MNI coordinates Z score Volume (mm3)

x y z

Language L The inferior parietal lobule −36 −75 39 3.44 135
Arithmetic L The inferior parietal lobule −42 −42 36 4.41 1458

The precuneus −15 0 18 3.93 162
The superior frontal gyrus, medial 0 21 42 3.53 567

R The right middle frontal gyrus 51 −39 48 4.03 810
Raven reasoning L The superior frontal gyrus, medial −6 30 36 5.41 2403

The middle frontal gyrus −27 9 48 5.10 3024
The inferior parietal lobule −36 −66 42 5.04 6129
The inferior frontal gyrus −48 18 30 4.91 891
The caudate −12 9 6 4.03 162
The superior frontal gyrus −21 6 48 3.72 351
The precuneus −33 3 48 3.55 54

R The inferior parietal lobule 45 −42 45 5.04 1053
The right middle frontal gyrus 39 15 54 4.78 864

SD L The inferior parietal lobule −39 −42 39 5.93 3699
The middle frontal gyrus −24 3 48 5.45 1350
The superior frontal gyrus, medial −3 18 39 5.11 1701
The superior frontal gyrus −21 3 57 4.84 459
The caudate −12 3 9 4.73 162
The inferior frontal gyrus −51 30 21 4.24 945
The precuneus −33 3 48 3.76 27

R The inferior parietal lobule 45 −42 45 4.82 540
The right middle frontal gyrus 30 12 51 4.38 540

during programming, all the voxels fell into the Calculation
component (Fig. 7).

The four components suggested division of labor underlying
CT. Therefore, a critical question is how they collaborate during
programming. To address this question, we used the four
components as seed ROIs and then calculated the functional
connectivity among the seed ROIs. The averaged functional

connectivity among seed ROIs is the measure for the integration
of the programming network constructed by these seed ROIs
(i.e., In connectivity). By contrast, the functional connectivity
among the seed ROIs and voxels that were not activated by the
programming task is the measure for the separation between
the programming network and the rest of the brain (i.e., Out
connectivity) (Wang et al. 2016; Hao et al. 2018; Yu et al. 2018).
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Neural Correlates of Computational Thinking Xu et al. 11

Table 3 Regions showed activation only in programming but not in any of the benchmark tasks, Puncorrected < 0.001, Alphasim corrected at
P = 0.05

Hemisphere Region MNI coordinates Z score Volume (mm3)

x y z

Left The middle frontal gyrus −21 21 45 4.61 2052
The superior frontal gyrus −21 18 48 4.56 1107
The inferior parietal
lobule

−48 −57 45 4.37 1782

The inferior frontal gyrus −45 36 15 4.26 189
The caudate −15 12 39 3.84 756
The superior frontal
gyrus, medial

−12 24 33 3.01 81

Right The right superior frontal
gyrus

24 24 57 3.77 486

The right middle frontal
gyrus

27 21 54 3.41 486

The inferior parietal
lobule

54 −45 48 3.07 162

Figure 5. (a) Regions where activation patterns in the arithmetic, reasoning, or spatial cognition task significantly predicted that of the programming task. (b) Pattern
resemblance within regions showing activation increase in programming. (c) The dissociation between the pattern resemblance of the three benchmark tasks. (d) The
Dice coefficients between the pattern resemblance maps of the three benchmark tasks.
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Table 4 Cortical regions showing pattern resemblance between benchmark tasks and programming

Benchmark task Region MNI coordinatesa Peak βb Volume (mm3)c

x y z

Arithmetic L The inferior parietal lobule −48 −42 57 0.90 4320
The superior frontal gyrus −21 12 63 0.80 756
The middle frontal gyrus −24 12 57 0.58 1485
The superior frontal gyrus, medial −15 12 63 0.55 594
The caudate −12 0 21 0.40 135
The inferior frontal gyrus −45 45 12 0.37 54

R The inferior parietal lobule 51 −45 51 1.00 999
The right middle frontal gyrus 33 12 57 0.65 405
The right superior frontal gyrus 24 24 57 0.48 243

Raven Reasoning L The inferior parietal lobule −60 −42 39 1.12 6372
The middle frontal gyrus −39 36 33 1.06 4428
The superior frontal gyrus, medial −3 27 33 0.84 2646
The superior frontal gyrus −21 15 51 0.83 702
The inferior frontal gyrus −51 24 27 0.78 702
The precuneus −36 6 48 0.70 54
The caudate −15 6 15 0.55 783

R The right middle frontal gyrus 33 27 51 0.73 540
The right superior frontal gyrus 27 27 54 0.67 378
The inferior parietal lobule 57 −36 51 0.64 486

Spatial cognition L The superior frontal gyrus −12 24 45 0.80 324
The middle frontal gyrus −42 42 21 0.75 567
The inferior frontal gyrus −45 33 15 0.65 729
The superior frontal gyrus, medial −9 24 45 0.62 2295
The inferior parietal lobule −33 −69 39 0.58 297

R The right middle frontal gyrus 33 12 48 0.36 162
Multiple tasks L The inferior parietal lobule −33 −78 36 3834

The superior frontal gyrus, medial −6 33 30 2403
The middle frontal gyrus −42 39 15 1836
The inferior frontal gyrus −48 42 12 594
The superior frontal gyrus −12 24 39 459
The caudate −15 3 15 81

R The inferior parietal lobule 54 −45 45 486
The right superior frontal gyrus 24 18 48 243
The right middle frontal gyrus 33 24 48 189

All L The superior frontal gyrus, medial −6 33 30 432
The superior frontal gyrus −42 45 12 54
The middle frontal gyrus −45 45 15 27

None L The inferior parietal lobule −36 −45 27 1215
The middle frontal gyrus −42 45 15 729
The superior frontal gyrus −18 21 42 432
The inferior frontal gyrus −42 33 15 378
The caudate −12 9 6 270
The superior frontal gyrus, medial −9 30 30 54

R The right middle frontal gyrus 30 15 45 432
The inferior parietal lobule 48 −48 39 216
The right superior frontal gyrus 21 21 51 108

Note:aFor each benchmark task, this column reported the center coordinates of the searchlight cube in which the standardized regression coefficients of the given
task reached its maximum in a given anatomical region. For the rest, this column reported the center coordinates of one example searchlight cube which fulfilled the
given condition.
bThe peak standardized regression coefficient in a given anatomical region.
cThe volume of voxels centered on which the searchlight cubes fulfilled the given condition.

We submitted the In and Out connectivity of each component
into a repeated-measure ANOVA with component (Shared, Visu-
ospatial, Calculation, and Reasoning), task state (programming
vs. control), and network (In vs. Out) as independent variables.
The results revealed a significant main effect of component,
F(1,19) = 4.32, P = 0.008, partial η2 = 0.19, with connectivity with

the Shared component being generally lower than that with the
Calculation component (MD = 0.004, P = 0.029) while no other
pairwise difference was significant. There was also a main
effect of task state, F(1,19) = 17.94, P < 0.001, partial η2 = 0.49,
with functional connectivity being higher during programming
than the control condition. Critically, there was a significant
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Neural Correlates of Computational Thinking Xu et al. 13

Figure 6. The results of the k-means clustering analysis revealed cognitive components across anatomical regions. (a) k = 4 was selected by a cross-validation approach
based on stability analysis (Lange et al. 2004). (b) The spatial extents of the four resultant components. (c) The composition of the four components in each anatomical
cluster. (d) The standardized activation profile of the four components. The activation level during programming was not entered into the clustering analysis. It was

presented here as a benchmark. (e) The profile of the standardized regression coefficients of the four components.

Figure 7. The location of the four components in the bilateral lateral frontal cortex (solid-line frames) and the left inferior parietal cortex (dash-line frames).

interaction between task state and network, F(1,19) = 37.08,
P < 0.001, with the In connectivity being higher (MD = 0.007,
P < 0.001) and the Out connectivity being lower (MD = 0.002,
P = 0.001) during programming than in the control condition

(Fig. 8), suggesting that the functional connectivity among
components were strengthened during the programming task.
This interaction was not modulated by component and the
three-way interaction was not significant (P = 0.468).
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Figure 8. The functional connectivity among the components of the programming network (the In connectivity) and between the components and regions not
responsive during programming (the Out connectivity). The bars in the dashed-line frame illustrated the In and Out connectivity across components, which shows

that the In connectivity increased during programming comparing with the control condition, while the Out connectivity decreased. The bars right to the dashed-line
frame illustrated the In and Out connectivity with each component as the seed ROI, which all showed the same pattern.

Discussion
The present study used fMRI to explore the neural basis of CT
and to further identify its underlying cognitive components. We
found that regions involved in CT were left-lateralized, mainly
in the bilateral inferior parietal lobule, the bilateral middle and
superior frontal gyri, the medial part of the left superior frontal
gyrus, and the triangular part of the left inferior frontal gyrus. By
comparing the neural correlates of CT and a set of key cognitive
tasks, namely language, arithmetic, reasoning, and spatial cog-
nition, we observed that CT showed extensive similarity with
all but the language task in both activation location and local
activation pattern, suggesting that, instead of a unitary capac-
ity, CT is built upon multiple cognitive processes, requiring a
composite set of abilities. Further, a k-means clustering analysis
revealed a four-component organization underlying CT, and the
connectivity analysis revealed online collaboration among these
dissociable components. The present study provides one of the
first empirical evidence on the neural basis of CT and further
sheds light on the application of CT in practice.

Similar to previous studies, the present study observed the
involvement of distributed fronto-parietal regions in coding-
related tasks. The activation of the inferior and the middle
frontal gyri and the inferior parietal lobule has been observed
during code comprehension (Siegmund et al. 2014; Castelhano
et al. 2019), and the blood oxygen level–dependent (BOLD) signal
from a set of distributed brain regions in frontal, parietal, and
occipitotemporal regions can readily classify code reviewing
and code comprehension from prose reviewing (Floyd et al.
2017). However, unlike studies on code comprehension, we did
not observe activation change in the insula, and the activation
change in the medial frontal cortex we observed was more
posterior than that modulating insula during code debugging
(Duraes et al. 2016; Castelhano et al. 2019). This is probably
because the programming task of the present study focused on
the problem-solving, or the “production”, aspect of CT. Future
work is needed to directly investigate the potential dissoci-
ation between the speculated “production” and “comprehen-
sion” distinction in CT. Having said this, we would also like

to underline that although programming differed from code
review and comprehension in visual input, task format, and
required output, they nevertheless shared some brain regions.
That is, programming may involve at least some of the cognitive
processes recruited in code review and comprehension. For
instance, they may all require the recruitment of CT in terms of
using computational concepts and skills to solve problems. This
commonness supported the theoretical conception of CT as a
composite cognitive process shared by a variety of tasks, instead
of a transient collection of cognitive processes that happened to
be recruited at the same time for the ongoing experimental task,
and it might be part of the critical component behind various
programming-related tasks regardless of their varied formats.

One major insight drawn from the present results was that
instead of a unitary capacity, CT is built upon multiple key
cognitive processes and requires a composite set of abilities.
First, among the four benchmark tasks, namely, the language,
the arithmetic, the reasoning, and the spatial cognition tasks,
all but the language task showed extensive similarity with CT in
activation location and pattern. Further, an additional contrast
of task difficulty (Supplementary Analysis 1) revealed that the
neural activation of the mental programming task can be hardly
explained by the domain-general processes dealing with task
difficulty, with extensive regions activated in the CT task not
being sensitive to task difficulty. Instead, CT is characterized by
the division of labor among the cortical regions. Though most
regions activated in CT were also activated in at least one of
the benchmark tasks, their activation and pattern similarity
profile across tasks differed. Clustering analysis revealed a four-
component organization among the cortical regions activated
during programming. Among the four components, three can be
reasonably speculated to reflect cognitive functions that were
differentially associated with different cognitive processes.

The first is a Reasoning component, which was named
because its high activation and high level of activation pattern
similarity between programming and the reasoning task
suggested its involvement in reasoning-related processes. The
emergence of a Reasoning component is consistent with the
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previous finding of psychometrical studies that the performance
in a test of CT is correlated with reasoning and problem-
solving abilities (Roman-Gonzalez et al. 2017). Voxels of this
component can be found in the left middle and superior frontal
gyri and the left inferior parietal lobule. Particularly, the left
dorsal lateral prefrontal cluster of the Reasoning component
partially corresponds to de la Vega et al.’s (2018) cluster 9 and
C6 identified based on the functional connectivity by Goulas
et al. (2012). This region has strong functional connectivity
with the default mode network (Goulas et al. 2012) and may
be involved in “internal” processes such as introspection
during programming and recollection of previous thoughts
in solving a problem. The left inferior parietal lobule voxels
of the Reasoning component were largely in the ventral part
of the inferior parietal lobule, falling in the parietal regions of
the default mode network (Shulman et al. 1997). In addition,
this cluster extends into the angular gyrus. The angular gyrus
has been proposed to be an interface between executive
processes and stored episodic representations (Wagner et al.
2005; Vilberg and Rugg 2008), which might be particularly
typical in solving complex problems as in programming and
reasoning. In addition, due to its partial overlap with the default
mode network, we speculate that this component reflects the
divergent thinking process in programming, or the generation
phase of problem-solving (Kleinmintz et al. 2019). Previous
studies proposed that the default mode network might be
involved in the generative cognitive processes rather than the
error detection and evaluation phase in creative thinking (Beaty
et al. 2016; Kleinmintz et al. 2019). Consistent with is speculation,
the Reasoning component showed selective activation in the
reasoning and the programming tasks, the only two tasks in our
battery that may involve divergent thinking.

The second is a Calculation component because the voxels
of this component showed high activation and high level of
activation pattern similarity with programming in the arith-
metic task. The voxels of this component are mainly observed
in the bilateral intraparietal sulcus and in the bilateral dorsal
lateral prefrontal cortex in and around BA 6 and BA 8. The emer-
gence of a Calculation component is consistent with the existing
theoretical proposal that computer programming is associated
with STEM abilities (Fedorenko et al. 2019). We speculate that
this component reflects the quantity representation during pro-
gramming. Consistent with this speculation, the bilateral infe-
rior parietal lobule, especially the intraparietal sulcus, has been
established to be critical for mathematical cognition. They were
activated during calculation tasks (Davis et al. 2009; Fedorenko
et al. 2013; Humphreys and Lambon Ralph 2015) and are pro-
posed to be associated with quantity representation (Dehaene
et al. 2003; Arsalidou and Taylor 2011), the processing of abstract
mathematical formulae (Friedrich and Friederici 2009), and alge-
braic transformation (Anderson et al. 2003). The bilateral dorsal
lateral prefrontal voxels of this component spatially correspond
to the anterior part of de la Vega et al.’s (2018) cluster 6/8.
Activation in this region has been reported in arithmetical com-
putation tasks, probably to support the phonological processing
involved in numerical tasks (Zhou et al. 2018). However, an
additional contrast of task difficulty (Supplementary Analysis
1) revealed that some of the parietal voxels of this component
were sensitive to task difficulty, which is consistent with the
observation that the voxels in this component showed an over-
all high activation in all three benchmark tasks. This finding
suggested that even with selective pattern similarity profile, the
Calculation component might not be entirely domain-specific

as its name suggested, and future work is needed to explore the
functional specificity of these voxels in dealing with arithmetic
problems.

The third is a Visuospatial component because the voxels of
this component showed high activation and high level of acti-
vation pattern similarity between programming and the spatial
cognition task, suggesting their involvement in visuospatial pro-
cesses. The emergence of a Visuospatial component is consis-
tent with the previous finding from psychometrical studies that
the performance in a test of CT, a cognitive ability considered
behind programming, is correlated with visuospatial abilities
(Roman-Gonzalez et al. 2017). The voxels of this component
were mainly observed in the left caudate, the left precuneus,
the bilateral superior frontal gyrus in BA 6, and the left inferior
frontal gyrus in BA 46. Activation in the posterior parietal lobe,
including the left precuneus, has been observed in visuospatial
tasks involving both small- and large-scale spatial abilities (Li
et al. 2019). The bilateral superior frontal gyrus in BA 6 may
correspond with the cluster 6/8 identified by meta-analysis
based on whole-brain co-activation, which is proposed to be
involved in attention and eye movement (de la Vega et al. 2018),
and has been found involved in mental imagery (Winlove et al.
2018). The voxels in the left inferior frontal gyrus in BA 46 may
belong to the rostral part of the cluster 9/46v or the posterior
part of the cluster 9/46v identified by meta-analysis based on
whole-brain co-activation, which is involved in working memory
and executive control (de la Vega et al. 2018). The caudate is
part of the basal ganglia and is involved in navigation tasks
(Latini-Corazzini et al. 2010). Taking the known functions of
these regions into account, we speculate that this component
reflects the visuospatial representation and mental imagery
processes involved in programming.

Even though the clustering analysis suggested functional
dissociation during programming, the fourth component, the
Shared component, emerged besides these three, at least in
terms of activation and pattern similarity, relatively domain-
specific components. This component and the findings of the
connectivity analysis suggested that CT may not be a mere
co-activation of parallel cognitive processes, but a composite
process integrated as a whole. Voxels of the Shared component
showed high activation in the programming task as well as in
all the three nonverbal benchmark tasks and showed high level
of activation pattern similarity between programming and the
spatial cognition task. These voxels are predominantly observed
in the left premotor cortex, the left medial frontal regions
extending to the middle cingulate gyrus, the left middle frontal
gyrus in and around BA 46 as well as small clusters in the left
posterior parietal cortex. This component remarkably overlaps
with the attention and working memory system (Cabeza and
Nyberg 2000) in the ventrolateral prefrontal region in and around
BA 46, the premotor region, and the inferior parietal lobule. In the
premotor region and the inferior parietal lobule, this component
also overlaps with the cognitive control network (Cole and
Schneider 2007), the working memory “core” network (Rottschy
et al. 2012), the dorsal attention network (Corbetta and Shulman
2002; Yeo et al. 2011), and the multiple demand network (Duncan
2010), which mediates goal-directed behavior and subserves the
control of cognitive operation through successive task steps.
Particularly, the bilateral premotor cortex was thought to be
involved in the maintenance of visuospatial attention (Owen
et al. 2005). It is found responding to various cognitive control
demands and was considered among the “core” cognitive
control regions (Dosenbach et al. 2006; Cole and Schneider
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2007) and the core regions of the dorsal attention system
(Vincent et al. 2008). The cingulate gyri have been related to error
monitoring (Taylor et al. 2007), integration of information (Devue
et al. 2007), coordinating and integrating activity of multiple
attentional systems (Peterson et al. 1999), and setting goals by
integrating available information (Arsalidou and Taylor 2011).
The rostral lateral prefrontal area in and around BA 46 underlies
the deployment of general cognitive resources and is involved
in stimulus-driven attention and working memory (Christoff
and Gabrieli 2000; Curtis and D’Esposito 2003; Owen et al. 2005;
Rottschy et al. 2012; de la Vega et al. 2018). Also, this region
is considered relevant to fluid intelligence (Clark et al. 2017).
The posterior parietal cortex was proposed mediating shifts
in attention, retaining task-related temporal information, and
preparing for a given task (Owen et al. 2005). The emergence of a
component implicated in executive control and working mem-
ory is also consistent with the behavioral correlation between
code review performance and working memory (Baum et al.
2019) and the expertise-dependent activation difference during
code comprehension in the power of alpha and theta band
(Crk et al. 2016; Yeh et al. 2017), both reflecting workload
and working memory (Klimesch 1999; Tesche and Karhu 2000;
Raghavachari et al. 2001).

Based on these functional characteristics, we speculate that
this component consists of the subset of brain regions support-
ing executive control and the deployment of cognitive resources
according to ongoing task demand. During programming, this
component may function as a local integration desk where the
workflow toward the solution of a programming problem was
specified, the task of each the domain-specific components
assigned, commands issued, and feedback gathered. In other
words, the other components may deal with problems within
their respective specialty, while the Shared component may
weave these separate cognitive processes into an integrated CT
process. Admittedly, it is also possible that this Shared com-
ponent did not reflect the active integration of functions or
information, but a domain-general component present in all the
benchmark tasks and the programming task, such as executive
control and/or inhibitory processes. Future study is needed to
examine this possibility. An additional contrast of task difficulty
(Supplementary Analysis 1) revealed that many of the medial
frontal voxels of the Shared component were sensitive to task
difficulty, which is consistent with the finding that the voxels
in this component showed an overall high activation in all three
benchmark tasks. This finding suggested that this component
might respond to task difficulty, which reinforces the speculated
role of this component in domain-general functions. Future
studies thus need to additionally consider the potential influ-
ence of task difficulty in identifying the neural correlates of
programming and CT.

The existence of a Shared component hinted at a potential
local site of integration during programming, while the
functional connectivity analysis further revealed collaboration
between the functional components on a global scale. The
between-component functional connectivity increased during
the programming condition comparing with the control
condition, suggesting that these components joined force
in the task of programming and functioned as cohesive
integrity. Further, in contrast to within-network connectivity,
the connectivity between the other brain regions and these
components decreased during programming comparing with
the control condition, suggesting that the neural activity of
the programming components, during their collaboration in

programming, deviates from that of the other parts of the brain,
that is, these components encapsulated programming. Note
that the present study focused on examining the potential
encapsulation of the CT network; therefore, in our analysis, the
Out connectivity of each participant was estimated by an overall
average of seed-based connectivity to all voxels in regions
other than CT network, which were much more extensive and
presumably more functionally varied than those within the CT
network.

In summary, our results suggested that programming may
involve 1) a reasoning module probably involving creativity/di-
vergent thinking via the default mode network, 2) a quantity
processing module, 3) a visuospatial processing module, and
4) a shared module probably functioning as a local integration
hub via domain-general executive control and working memory.
These components, however dissociable, were involved in global
collaboration reflected by the connectivity analysis. Together,
the global integration reflected by the connectivity analysis
and the (speculated) local integration effected by the Shared
component supported the construct validity of conception of
the cognitive substrates of programming, and CT in general,
as a relatively self-contained and dissociable cognitive process,
instead of a transient collection of cognitive processes happened
to be recruited at the same time for the ongoing programming
problem. Note that the number of components was decided
in a data-driven manner by optimizing the instability index
of k-means clustering, and it was coincidentally identical to
the number of benchmark tasks. The present study tentatively
named each component according to their activation and pat-
tern similarity profiles between programming and the bench-
mark tasks as well as the known functional characteristics of
the brain regions associated with each component. That is, the
naming and the functional inference of the components came
from reverse inference and shall be interpreted with caution.
In addition, the naming of the components was unavoidably
affected by the selection of the benchmark tasks of the present
study. Therefore, future work is needed to directly test the
speculated functional role of each component.

Another intriguing observation of the present study was a
clear dissociation between verbal and nonverbal tasks. Unlike
nonverbal tasks, the neural activation during programming
showed negligible overlap with the language task. This is
not consistent with the reported association between the
language abilities and programming practice or the mastering of
programming language (Peppler and Warschauer 2011; Kazakoff
and Bers 2014) and the fMRI evidence that code comprehension
activates brain regions involved in language processing, such as
BA 44 in the inferior frontal gyrus and BA 21 in the middle
temporal gyrus (Siegmund et al. 2014). The inconsistency
might come from the difference in task characteristics. That
is, previous studies mostly focused on processes related to code
comprehension and reviewing, which concerns the usage of
programming language to a larger extent than the programming
task used in the present study, which does not require the
participants to comprehend or generate any specific code.
Having said this, note that the language-related activation in
the present study was rather constricted in the frontal cortex
comparing with that in a study that used a subject-specific
fROI approach to identify the neural correlates of language
(Fedorenko et al. 2010). Specifically, language-related regions
in the IFG and MFG reported by Fedorenko et al. (2010) were
adjacent but posterior to the programming-related regions
identified in the present study. Therefore, even with larger
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language-related regions suggested by previous studies, the
distinction between language processing and programming
likely remained, implying that programming and language
processing may underlie different mechanisms. However,
caution shall be exercised because the line separating them
might be thin, given their adjacency in anatomy.

The potential discrepancy between the neural correlates of
language and programming may further reflect a critical feature
of programming and maybe CT in general: it is a composite
task requiring multiple functional modules and could be under-
stood in multiple levels. Context-dependent neural correlates
associated with the semantic and/or symbolic characteristics of
programming languages or with cognitive demands of specific
programming problems might be quite different from the neural
correlates dictated by the “core” cognitive demands overarch-
ing various contexts, types, and stages of programming. The
investigation regarding the former is doubtlessly important in
understanding the cognitive and neural correlates of program-
ming as a behavioral task, while investigation on the latter helps
reveal the cognitive substrates of a general approach of thinking,
that is, CT (Wing 2006, 2008) behind various programming tasks.
Future studies might benefit from specifying the level of gener-
ality of their operational definition and the context dependency
of their findings.

Also note that the present study examined the neural cor-
relates of CT by comparing the neural correlates of a repre-
sentative CT task with the representative tasks of other cog-
nitive domains. This unavoidably led our primary attention to
corresponding domains, such as reasoning, spatial ability, and
arithmetic ability. An equally important question would be to
dedicatedly examine how domain-general processes, such as
working memory, decision-making, and executive control, mod-
ulate the functionality of CT. Our results provided preliminary
evidence of the involvement of such domain-general processes.
For instance, the prefrontal, the medial frontal, and the parietal
clusters of the CT network were also recruited in decision-
making, particularly in the choice-selection stage (Ernst et al.
2004), suggesting a role of decision-making in CT. This is in
line with the theoretical proposal that evaluation and decision-
making on solutions are critical parts of CT (CSTA and ISTE 2011;
Selby and Woollard 2013). Also, as we mentioned earlier, the
CT network subsumed the Shared component that was likely
involved in attentional control, working memory, and execu-
tive control of complex cognitive operations. However, these
domain-general functions were inferred in a data-driven man-
ner; therefore, future studies are needed to dedicatedly examine
how these domain-general processes organize and modulate CT.

A factor that might affect the generality of the findings of the
present study is that the present study recruited participants of
a narrow range of expertise with computational tasks. They were
all college students with basic knowledge and basic experience
of programming. Considering the previous report of expertise-
dependent neural correlates of programming, especially in the
neural distinction between code processing and language pro-
cessing (Floyd et al. 2017), it might deserve further investigation
regarding the expertise-related factors influencing the neural
and cognitive correlates of programming.

Even with these limitations, the present study presented one
of the first investigations on the neural and cognitive substrates
of programming, a representative specimen of CT. We observed
that programming reused some well-established cognitive func-
tions but at the same time assembled them adaptively, for
instance, by adding quantity processing and visuospatial pro-
cessing into reasoning and divergent thinking, to meet the new

cognitive challenge presented by technique advance. Investiga-
tion following this line may advance the understanding of the
potential of human intelligence and its interplay with culture.

Conclusion
Using fMRI, the present study identified a largely left-lateralized
network of distributed cortical regions that are involved in com-
putational thinking, mainly in the bilateral inferior parietal lob-
ule, the bilateral middle and superior frontal gyri, the medial
part of the left superior frontal gyrus, and the triangular part of
the left inferior frontal gyrus. This network consists of multiple
dissociable components among which evident online collabo-
ration exists. These findings suggest that CT is not a unitary
capacity or a simple sum of parallel cognitive processes, but
a composite cognitive process integrating a set of intellectual
abilities, particularly those in the STEM domains.
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