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A B S T R A C T

fMRI with high spatial resolution is beneficial for studies in psychology and neuroscience, but is limited by
various factors such as prolonged imaging time, low signal to noise ratio and scarcity of advanced facilities.
Compressed Sensing (CS) based methods for accelerating fMRI data acquisition are promising. Other advanced
algorithms like k-t FOCUSS or PICCS have been developed to improve performance. This study aims to
investigate a new method, Dual-TRACER, based on Temporal Resolution Acceleration with Constrained
Evolution Reconstruction (TRACER), for accelerating fMRI acquisitions using golden angle variable density
spiral. Both numerical simulations and in vivo experiments at 3T were conducted to evaluate and characterize
this method. Results show that Dual-TRACER can provide functional images with a high spatial resolution
(1×1 mm2) under an acceleration factor of 20 while maintaining hemodynamic signals well. Compared with
other investigated methods, dual-TRACER provides a better signal recovery, higher fMRI sensitivity and more
reliable activation detection.

Introduction

The conventional fMRI acquisition method, single-shot echo planar
imaging (EPI), usually suffers from low spatial resolution and image
distortion due to its low bandwidth along the phase-encoding direction,
despite its fast imaging speed. It has been shown that improved spatial
resolution can be beneficial to localize activation more accurately
(Farivar et al., 2016; Feinberg and Yacoub, 2012; Hirose et al., 2013;
Martuzzi et al., 2014; Suthana et al., 2015; Yacoub et al., 2003). Multi-
shot EPI techniques (Cheng et al., 2001; Menon et al., 1997) can be
used to improve the spatial resolution, but they prolong the imaging
time and decrease the temporal resolution. Ultra-high magnetic field
MRI such as 7 T systems can also be used to improve the image
resolution; however, such systems are not widely available and cannot
be used in clinical setting at present (Martuzzi et al., 2014; Ugurbil,
2012; Yacoub et al., 2008). Therefore, new fMRI techniques with high
spatial resolution are desirable.

One typical solution to achieve high spatial resolution for fMRI is
parallel imaging, which recovers image from under-sampled data by

using coil information. For example, SENSE (Preibisch et al., 2003;
Pruessmann et al., 1999; Weiger et al., 2002) and GRAPPA (Griswold
et al., 2002; Heidemann et al., 2006) have been used for fMRI
acceleration. However, the acceleration factor of parallel imaging is
usually limited, since it is restricted by the number of elements in
phased array coils and the g-factor issue, which is the noise amplifica-
tion during the reconstruction (Pruessmann et al., 1999). Therefore,
parallel imaging alone has limited performance for improving fMRI
resolution.

Compressed sensing (CS) is a particularly promising technique for
fast MRI (Lustig et al., 2007, 2008). It can recover images under the
sub-Nyquist sampling rate by enforcing sparsity in a certain transform
domain, such as wavelet or total variation (TV). Incoherent aliasing
artifacts from random sampling in CS also facilitate nonlinear recon-
struction. CS combined with parallel imaging has been successfully
used to improve spatial/temporal resolution or shorten the scan time in
dynamic MR imaging, such as cardiac imaging (Otazo et al., 2014),
liver imaging (Feng et al., 2014), and time-resolved angiography (Lee
et al., 2013). CS has also been introduced to fMRI to accelerate signal
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acquisitions (Jeromin et al., 2012; Jung and Ye, 2009; Jung et al.,
2007). In the study by Zong et al., CS accelerated GRE fMRI using
Gaussian random sampling along the phase-encoding direction can
achieve a reduction factor of 4 with a single channel coil (Zong et al.,
2014). k-t FOCUSS was developed to accelerate fMRI acquisition based
on shared temporal information(Jung et al., 2009). k-t FASTER, an
approach based on low rank constraints of matrix completion, can
achieve a reduction factor of 4.27 using kz-t pseudo-random Cartesian
sampling (Chiew et al., 2015). Prior image constrained CS (PICCS) and
TV-based CS were also developed to reconstruct highly under-sampled
fMRI data (Chavarrias et al., 2015). With the advantage of the non-
coherent acquisition for fMRI, variable density spiral (VDS) can be
suitable for CS imaging (Holland et al., 2011, 2013). Recently, a high
spatial resolution method was reported using VDS with a balanced
steady state free precession sequence, which achieved a reduction
factor of 5.3 with a single channel coil (Fang et al., 2016).

Other techniques for fast high resolution fMRI include view sharing
with generalized series model (Nguyen and Glover, 2013), constrained
reconstruction using low-rank spatiotemporal structure (Nguyen and
Glover, 2014), and multiplexing (Feinberg et al., 2010). In addition,
simultaneous multi-slice imaging (SMS) techniques (Larkman et al.,
2001; Moeller et al., 2010) have also been introduced to fast fMRI,
which can accelerate data acquisition by reducing the repetition time
(TR) (Zahneisen et al., 2014). SMS can be combined with the in-plane
acceleration methods to conduct fMRI with high spatial and temporal
resolution.

Xu et al. proposed a time-resolved imaging technique for dynamic
contrast-enhanced MRI, temporal resolution acceleration with con-
strained evolution reconstruction (TRACER), for liver lesion diagnosis.
With signal acquisition by a stack of spirals, TRACER can provide
three-dimensional volume coverage with a high temporal frame rate
from highly under-sampled data. The image reconstruction in this
method is based on the hypothesis that temporal changes are small at
short time intervals (Xu et al., 2013).

In this study, we propose a new high resolution fMRI method, Dual-
TRACER, based on TRACER, for accelerated acquisition using golden
angle VDS. Dual-TRACER also assumes that signal change between
adjacent frames is small. The image of the current frame is imposed to
be similar to its neighboring frames. The constraint contributes to the
recovery of fMRI images especially from highly undersampled data.
Compared with the original method, Dual-TRACER reduces error
accumulation by forward and backward operation. Both numerical
simulations and in vivo experiments at 3T were conducted to evaluate
the performance of Dual-TRACER. This new method was also com-
pared with the original TRACER, PICCS, k-t FOCUSS and TV-based
CS.

Theory

fMRI data formulation

In fMRI, the k-space data can be formulated as

y PFS x= (1)

Where y is the k-space data, x is the image, S is the coil sensitivity map,
F is the non-uniform Fast Fourier transform (NUFFT) (Fessler, 2007)
operator and P is the k-space projection onto sampling trajectories.
Starting with this basic equation, we can formulate models for
advanced image reconstruction.

Compressed sensing

Based on the theory of CS, the image can be recovered from highly
under-sampled data, if certain sparse domain exists and a random
sampling pattern is used. The CS reconstruction is formulated as
follows:

{ }Fx y x λ ψx= arg min − ( ) +2
2

1 (2)

where x is a vector containing the images of all frames, ψ is a sparse
transform operator, λ is the regularization weight and F PFS= .
Random sampling can be achieved using either specially designed
Cartesian trajectories or non-Cartesian trajectories such as radial or
VDS. Different transforms can be used to form a sparse domain,
including TV, wavelet transform and Fourier transform. In this study,
we implemented CS with TV in both the spatial and temporal
dimension, k-t FOCUSS and PICCS methods. For TV-based CS, the
model is as follows:

{ }Fx y x λ TVx λ TV x= arg min − ( ) + + s2
2

t t 1 s 1 (3)

where TVt and TVs are TV operators along the temporal and spatial
dimensions; λt and λs are regularization weights.

For the k-t FOCUSS method, time series are separated into spatial
and time domain.

{ }F FF FΔx y x WΔx λ Δx x x WΔxˆ = arg min − ( ) − ( ) + , = + ( )s s t t0 2
2

2
2

0

(4)

where Fs is Fourier transform in the spatial domain, Ft is Fourier
transform in the time domain and W is the weighting matrix which is
updated in each iteration (Jung et al., 2009).

For the PICCS method, images are solved based on spatial TV of
two items, TV of x and TV of x x− ref , shown by the following equation:

⎧⎨⎩
⎫⎬⎭Fx y x u x λ TV x x λ TV x= arg min − ( ) + + ( − ) + ( )s ref s2

2
1 r 1 s 1

(5)

where λr and λs are regularization weights for the two TV items.

TRACER

TRACER was originally developed for 3D liver dynamic imaging
(Xu et al., 2013). Assuming that the change of signal intensity between
adjacent frames is small, the n-th frame of reconstructed image xn is
forced to be close to the previous frame xn−1. Using this constraint,
TRACER can provide high spatiotemporal resolution images with a
large undersampling rate. Using the iterative regularized Gauss-
Newton method, the corresponding reconstruction is formulated as
follows:

⎧⎨⎩
⎫⎬⎭Fx y x λ x x= arg min − ( ) + − ,n n n m n m n, 2

2
, ,0 2

2
(6)

where m is the current iteration number. The fMRI image xn can be
reconstructed iteratively. The initial guess for the n-th frame xn,0 is set
to the previous frame xn−1. Since the sampling trajectory is rotated
using a golden angle for different time frames, the initial value of the
first frame x0 is set to the image reconstructed from the fully-sampled
data combing the first N interleaves, where N is also the acceleration
factor. The minimization problem of Eq. (6) is solved by a conjugate
gradient algorithm.

Based on Eq. (6), TRACER enforces data fidelity to the under-
sampled data of the current time frame, and maintains image quality
by imposing consistency with the previous frame. The pseudocodes are
listed in the Appendix A.

Dual-TRACER

In TRACER, since the reconstruction of current frame depends on
the previous frame, errors can be accumulated gradually along the time
series. To suppress the error accumulation, we executed the recon-
struction one more time by reversing the order of time series and
setting x x=n n,0 +1. The results from TRACER (or forward-TRACER)
and backward-TRACER are then averaged to form the final images. The
proposed method is therefore called Dual-TRACER.
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Methods

Ten healthy subjects were scanned (7M and 3F, age 21–30 years,
mean 26 years), following the approval by the Institutional Review
Board at Tsinghua University with subjects’ written informed consent.
All data were collected on a 3T Philips Achieva scanner (Philips
Healthcare, Best, The Netherlands) with a 32-channel head coil.

Numerical simulation

Simulation was conducted to evaluate Dual-TRACER in comparison
with four additional methods, TV-based CS, PICCS, k-t FOCUSS, and
TRACER. Conventional single-shot EPI acquisition was used to obtain
the reference fMRI images during a 4-min finger tapping task (20 s on
and 20 s off). Other parameters included, TE=35 ms, TR=2 s,
FOV=230×230 mm2, acquisition matrix=128×128. Coil sensitivity
maps for a virtual eight-channel coil were computed using the Biot-
Savart law analytically.

Using the acquired fMRI images as the “ground truth”, the under-
sampled k-space data were generated via the following steps: (1)
multiply the reference fMRI images by the sensitivity maps of different
channels; transform the multi-channel images into full-sampled k-
space with N-interleaf VDS trajectories (α=4) using NUFFT; (3) under-
sample the k-space with different acceleration factors. To keep the
temporal resolution the same as that of the single-shot EPI, we chose to
use one interleaf for each frame. As a result, the acceleration factor is
equal to the number of interleaves N. Between two adjacent frames,
sampled trajectories were rotated by a golden angle to provide
complementary information. In this study, acceleration factors from
4 to 28 were tested. The acquisition matrix size was set to 128×128.

In vivo experiments

In vivo fMRI experiments were conducted using visual stimulus and
finger tapping tasks. Prospectively under-sampling was used to acquire
the hemodynamic data directly.

The golden angle rotated VDS (α=4) was used for data acquisition,
which fulfills the requirement of incoherent aliasing artifacts for CS
(Lustig et al., 2008), and helps remove aliasing artifacts for TRACER
and Dual-TRACER. To control off-resonance induced blurring artifacts,
which are amplified by a long readout duration of spiral sampling, the

acquisition windows were set between 17ms and 24ms in all experi-
ments. Consequently, when a higher resolution is acquired, a larger
number of interleaves are needed for the full-sampled k-space to meet
the Nyquist sampling rate. In addition, only one interleave was used to
sample each frame, following the sampling pattern in the simulation.
Then for each time point, the acceleration factor was equal to the
number of spiral interleaves N. PB-volume shimming provided by the
Philips scanner was used in all functional acquisitions.

The stimulus paradigm to induce functional brain activation in the
visual cortex was a 4-min block design consisting of 20 s of blank
screen fixation alternating with 20 s of a flashing and rotating checker-
board at 8 Hz. The subjects were instructed to passively fixate on a
cross-hair in the center of the video screen at all times. Two datasets
with different spatial resolutions were acquired: 1.3×1.3 mm2 with 8×
acceleration, 1.0×1.0 mm2 with 20× acceleration. Other imaging para-
meters included: FOV=200×200 mm2 TR/TE=2000/35 ms. 30 slices
were acquired with a slice thickness of 3 mm and a gap of 0 mm, above
and below the Calcarine fissure. 120 time points were acquired to form
a dynamic time course. One run was acquired for each testing scheme.

The finger tapping paradigm to induce functional brain activation
in the motor cortex was a 4-min block design consisting of 20 s of rest
alternating with 20 s of unilateral right finger tapping. For the fMRI
data acquisition, the optimized scheme from the visual stimulus
experiment was used, i.e. only the 1×1 mm2 resolution with 20×
acceleration was tested to validate the selected protocol from the
former experiment. Other imaging parameters including TR, TE and
FOV were the same as the visual stimulus experiment.

High-resolution T1-weighted structural images were acquired with
slice thickness of 1 mm without a gap. Other imaging parameters were:
TR/TE=9.5/4.5 ms, FOV=200×200×90 mm3, image resolu-
tion=0.8×0.8×1 mm3. 90 slices were acquired in 1.5 min.

Optimization of regularization weights

The regularization weights were optimized through the simulation
data by minimizing the root-mean-square error (RMSE) of the
reconstructed images for TV-based CS, k-t FOCUSS, PICCS, and
TRACER after a coarse parameter search. The acceleration factor is
4x. The calculation of RMSE is described in the Data Analysis section.

For PICCS, the range of λr and λs was investigated from 1e-1 to 1e-4
with 7 steps for the two TV items.

Fig. 1. The reconstruction flowchart of Dual-TRACER. Acquisitions along the coil and time series dimensions are shown. The reconstruction is executed in both forward and backward
orders, and the final image is formed from the two calculations.
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For TV-based CS, the range of λs and λt was investigated from 5e-1
to 1e-4 with 8 steps in both temporal and spatial dimensions.

For k-t FOCUSS, the range of λ was investigated from 1e-2 to 1e-6
with 5 steps.

For TRACER, the range of λ was investigated from 2e-1 to 5e-1 with
9 steps.

The k-space dataset was normalized to enable the regularization
parameters not to change for different acceleration acquisitions.

Image reconstruction

Under-sampled VDS data were reconstructed with conventional
reconstruction using NUFFT, TV-based CS, PICCS, k-t FOCUSS,

TRACER and Dual-TRACER. We used the approach of Lustig to solve
Eqs. (3)–(5) (Lustig et al., 2007). An NUFFT algorithm (Fessler and
Sutton, 2003) with Kaiser-Bessel kernel was utilized to grid the non-
Cartesian data. For NUFFT, the oversampling ratio was 2 and the width
of the convolving function was 8. A Voronoi weight function was
utilized to compensate the sampling density of VDS in k-space domain.
The optimized weights from the simulation were applied in the in vivo
experiments.

The reconstruction flowchart of Dual-TRACER is shown in Fig. 1.
Sensitivity maps were computed from the first group of the fully-
sampled k-space data, which were the first N spiral interleaves. In the
reconstruction, forward-TRACER and backward-TRACER were con-
ducted separately, where the initial guess was set to the image

Fig. 2. Optimization of regularization weights for k-t FOCUSS, TV-based CS, PICCS and TRACER. The optimal values were chosen based on the minimal RMSE.

Fig. 3. RMSE comparison at different acceleration factors from 4 to 28 in simulation. (A) Comparison of Dual-TRACER, k-t FOCUSS, PICCS and TV-based CS. (B) Comparison of Dual-
TRACER with forward-TRACER and backward-TRACER.
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calculated from either the first or the last N frame, respectively. The
maximum iteration number was 100 and the stopping criterion Tol was
10−5 (Appendix A). The images obtained by the two procedures were
then averaged to form the final images.

All the reconstruction procedures were implemented using Matlab
(Mathworks Inc., Natick, MA) on a PC with 3.10 GHz quad-core CPU
and 32 GB RAM.

Data analysis

fMRI pre-processing and statistical analysis were performed in
FEAT V6.00 of FSL (Smith et al., 2004). Pre-processing steps included
motion correction by MCFLIRT, high-pass temporal filtering ( >
0.01 Hz), and co-registration by self-developed MATLAB scripts. No
smoothing was applied. Head motion was minor for all scans, in which
translations were less than 1.5 mm and rotations were less than 1°.
Pixel-wise activation maps were calculated using a general linear model
(GLM) with a regressor specific for each task. A standard gamma
neurovascular-coupling model as the hemodynamic response function
was convolved with the blocks. Local autocorrelation correction
(Woolrich et al., 2001) was then performed. The P values were
corrected by using the familywise error (FWE) method with PFWE <
0.05 (Holland et al., 2013).

In order to evaluate the performance of different methods in the

simulation, two quantitative indices were calculated as follows.
Root-mean-square error (RMSE) is defined as follows:

∑RMSE
N

x x
x

= 1 ˆ −

t N

t t F

t F=1: (7)

where x̂t is the reconstructed image, xt is the reference, t represents the
index of frame, and N is the total number of frames. F is the Frobenius
norm, i.e., the root of sum-of-square of all elements in one matrix.

Signal sensitivity (SEN) and false positive rate (FPR) are defined as
follows:

SEN TP
FN TP

=
+ (8)

FPR FP
FP TN

=
+ (9)

where TP, FN, FP, TN are the numbers of true positive, false negative,
false positive and true negative voxels, respectively, within the 5-pixel
perimeter layers of the activation volume (Fang et al., 2016).

The degrees of freedom (DOF) were also computed to evaluate what
benefit the accelerated reconstruction can provide (Kruggel et al.,
2002).

Fig. 4. The reconstructed images and RMSEs from different reconstruction methods, with an acceleration factor of 8. (A) The reconstructed image of one frame by each method. (B)
Corresponding error maps amplified by a factor of 20. (C, D) RMSE values of reconstructed images of all frames by different methods. Note that the RMSE values of Dual-TRACER and
TRACER are plotted in (D) because they cannot be distinguished in (C).

X. Li et al. NeuroImage 164 (2018) 172–182

176



Results

Optimization of regularization weights

As shown in Fig. 2, the optimal λ is 1e-3 for k-t FOCUSS; λt=1e-1,
λs=1e-2 for TV-based CS; λr=5e-3, and λs=1e-2 for PICCS; λ=5e-3 for
TRACER.

Numerical simulation

To evaluate the reconstruction performance of Dual-TRACER,

different acceleration factors from 4 to 28 were used, and the
corresponding RMSE values were obtained using Eq. (7). As shown
in Fig. 3A, Dual-TRACER provides smaller RMSE values than k-t
FOCUSS, PICCS and TV. In addition, Dual-TRACER achieves better
results than TRACER or backward-TRACER, shown in Fig. 3B,
although the difference is smaller than that from other CS based
methods. The reconstructed images of one frame (8x acceleration) and
the corresponding error maps by different methods are shown in
Fig. 4A and B, and the RMSE values of all frames are plotted in Fig. 4C
and D. It can be observed that Dual-TRACER produces smaller errors
than other methods.

Fig. 5. Comparison of correlation (A, B) and dynamic signals (C, D) reconstructed by different methods at high and low peak HRF amplitudes. Five reconstruction methods are
evaluated: Dual-TRACER, TRACER, TV-based CS, k-t FOCUSS, and PICCS. (A, B) Mean correlations for high and low peak HRF amplitudes, respectively. (C, D) Recovered signals at
high and low peak HRF amplitudes, respectively, for an acceleration factor of 24. The gray lines in (C) and (D) denote signals from voxels with different amplitudes, and black lines
denote the averaged signals.

Fig. 6. Comparison of CNR reconstructed by different methods at high (A) and low (B) peak HRF amplitudes for different acceleration factors of 4,12 and 20.
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In order to evaluate the performance of different methods at
different contrast to noise ratio (CNR), the recovered dynamic signals
at a high peak hemodynamic response function (HRF) amplitude
(~8%) and a low peak HRF amplitude (~3%) are plotted in Fig. 5C
and D, with an acceleration factor of 24 (Fang et al., 2016). Two
representative periods are plotted. It is observed that k-t FOCUSS and
TV-based CS can recover signals accurately at a high peak HRF
amplitude, but cannot at a low value. TRACER and Dual-TRACER

worked well at both peak HFR amplitude, while PICCS failed at both
amplitudes.

In order to quantitatively evaluate the recovered signals from
different methods, averaged pixel-wise correlation between the hemo-
dynamic signals and the reference for high and low peak HRF
amplitudes were calculated and are shown in Fig. 5A and B, respec-
tively. Acceleration factors from 4 to 24 were examined. Results show
Dual-TRACER achieves a higher correlation with the reference than
other methods, in both high and low peak HRF amplitudes, indicating
that Dual-TRACER can recover signals more reliably. Other methods
performed well for low acceleration factors under 8×. For high
acceleration factors, TV-based CS and k-t FOCUSS worked well at the
high peak HRF amplitude, but showed poor performance at the low
levels.

The CNRs of the different reconstruction methods at both high and
low peak HRF amplitudes are also compared in Fig. 6. Dual-TRACER
has the highest CNR among the five methods.

In Fig. 7, SEN and FPR results generated by different reconstruc-
tion methods with undersampling factors from 4× to 28× are listed.
Dual-TRACER and TRACER have higher SEN and FPR than other
methods, and Dual-TRACER has the highest SEN. For the cost of the
high SEN, there is a higher FPR in Dual-TRACER than TRACER,
although they have a relative lower FPR than other methods with the
undersampling factors from 4× to 12×. For higher undersampling
factors ( > 16×), it is difficult to detect activated regions for other CS
based methods.

Fig. 7. SEN and FPR in Dual-TRACER, TRACER, k-t FOCUSS, PICCS and TV with
undersampling factors from 4× to 28×.

Fig. 8. Comparison of the activation maps and hemodynamic signals from PICCS, k-t FOCUSS, TV based CS, TRACER and Dual-TRACER in the visual stimulus experiment, at
acceleration of 8 (resolution=1.3×1.3 mm2) and 20 (resolution=1×1 mm2). (A) The activation maps are overlaid onto fMRI images from different reconstruction methods. (B) The
hemodynamic signals from different methods. The gray lines denote the signal from each voxel, and the black lines denote the averaged signal.
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In vivo experiments

Fig. 8 shows the in vivo visual stimulus results using different
reconstruction methods, for acceleration factors of 8 and 20. It is
shown that for the same acceleration factor, Dual-TRACER and
TRACER can provide more activated voxels than other methods based
on CS, and are more capable of recovering time-series signals. TRACER
has relatively weaker activation for the acceleration factor of 20, while
Dual-TRACER has consistent performance for acceleration factors of 8
and 20.

The results by Dual-TRACER from another two subjects for the
visual stimuli are shown in Fig. 9. The image resolution is 1×1 mm2,
with an acceleration factor of 20. The visual cortex can be mapped by
this method.

The DOF values for different reconstruction methods are shown in
Table 1. For higher undersampling factors (≥8×), DOF of Dual-
TRACER is consistently larger than that of TRACER. When compared
to TV based CS and PICSS, Dual-TRACER gives slightly lower DOF
values.

The results of finger tapping experiment was shown in Fig. 10,

using 20× acceleration with a resolution of 1×1 mm2. Dual-TRACER
can detect the activation more efficiently than PICCS, k-t FOCUSS, TV-
based CS and TRACER.

Discussion

In this study, a new reconstruction method, Dual-TRACER, is
proposed for high-resolution fMRI. Simulations and in vivo experi-
ments have demonstrated that the proposed method outperforms the
tested CS-based methods and the original TRACER, by providing
higher image quality and more accurate activation maps.

Although CS can recover images from under-sampled data for
structural MRI, the acceleration factor for fMRI is limited. This is due
to the inherently weak BOLD signals (Zong et al., 2014). In this study,
the CS based methods can generate acceptable results at acceleration
factors of 4–8 similar with previous studies (Chiew et al., 2015; Fang
et al., 2016; Zong et al., 2014), but failed to provide reliable activation
maps at larger factors.

As a novel fast imaging method in liver MRI, TRACER can generate
high spatial and temporal resolution images from highly under-
sampled data. It was later used for quantitative susceptibility mapping
(QSM) to compute cerebral blood flow and cerebral blood volume, and
showed a reliable performance (Xu et al., 2015). In TRACER, the image
of the current frame is imposed to be similar to the previous frame,
based on the assumption that the dynamic change of images is
temporally smooth. This assumption is also used here for fMRI, by
adopting an optimized scheme Dual-TRACER. Simulations and in vivo
tests validate that Dual-TRACER is more advantageous than the CS-
based methods and TRACER alone.

The temporal TV and the constraint in TRACER are similar since
they both impose smoothness along the time dimension. However,

Fig. 9. Two more subjects from the visual stimulus experiment are presented. The acquisition used 20× under-sampling with a target resolution of 1×1 mm2. In the first row for each
subject, functional images in different locations are shown. In the second row, activation maps are overlaid onto the T1 weighted images.

Table 1
DOF for different reconstruction methods at different acceleration factors.

4× 8× 12× 16× 20× 24×

Dual-TRACER 103 113 111 109 108 106
TRACER 112 108 104 97 98 98
TV 108 113 114 113 113 110
k-t FOCUSS 108 109 109 108 109 107
PICCS 94 115 116 115 113 113
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instead of applying the directly enforced smoothness in temporal TV,
TRACER utilizes the reconstructed image of the previous frame as the
initialization for the current frame. After initialization, the current
frame is not influenced by the previous frame. Therefore, the constraint
in TRACER is considered to be a safer smoothing strategy than
temporal TV. So the optimal RMSE for the TV method was larger than
that of TRACER (Fig. 2).

For k-t FOCUSS, we chose the middle frames as the fully sampled
frames, instead of the beginning and the end. Therefore, the middle
frames had the lowest errors (Fig. 4). TV was computed by subtracting
the current frame by its previous frame. For the first frame, since the
previous frame did not exist, it was approximated by the current frame,
which resulted in errors. And vice versa for the last frame it was
processed similarly when inverse TV was conducted. That is why the
TV method gave the largest RMSE on the edge (Fig. 4).

In simulation, Dual-TRACER can achieve accurate recovery with a
small RMSE even with an acceleration factor of 28. In the in vivo
experiment, however, there are various factors that could introduce
artifacts such as off-resonance effects. In this study, an acceleration
factor of 20 can be achieved with an in-plane resolution of 1×1 mm2 in
the brain. Both visual stimuli and finger tapping tests showed that
Dual-TRACER can detect the activation maps reliably.

We tested different regularization factors for all acceleration factors
used in this study, and found that the optimal factors are similar. The
reason is that when different acceleration factors are used, only the
spatial resolution is changed, whereas the temporal resolution remains
identical. In other words, the frame-to-frame similarity is kept the
same for different undersampling. Since the effective regularization is
applied along the time dimension, the optimal lambda does not change

much theoretically. Therefore, we used a constant lambda for each
method for simplicity.

Off-resonance artifacts can be a big issue for non-Cartesian
sampling trajectory. High order shimming was used for the in vivo
experiments. Additionally, the readout window of spiral acquisition
was kept short and the blurring artifacts were not significant in the
results. If longer readout windows are used or off-resonance effects are
significant, blurring artifacts may need to be taken into consideration.

TRACER and Dual-TRACER are based on the assumption that
fluctuation of the fMRI signals is small. In cases when the dynamic
change between two adjacent frames is large, additional regularization
terms are needed to take the large fluctuations into consideration. The
reconstruction weights and performance of Dual-TRACER under these
cases need further investigation in the future.

It is shown that the DOF of Dual-TRACER is larger than that of
TRACER when the undersampling factor ≥8× (Table 1). The reason can
be that the accumulated errors in TRACER are reduced by forward and
backward operations. The DOF values of Dual-TRACER are slightly
lower than those of TV and PICCS, while they are comparable to k-t
FOCUSS. This may need further investigation in the future.

In this study, although the in-plane fMRI spatial resolution can
reach a sub-millimeter level with a common temporal resolution of 2 s,
the through plane resolution, 3 mm, is clearly a limitation. Through-
plane resolution can be improved using the super-resolution technique
(Gholipour et al., 2010; Greenspan et al., 2002; Setsompop et al., 2015)
and simultaneous multi-slice imaging (Larkman et al., 2001; Moeller
et al., 2010). Three-dimensional golden angle spiral acquisition with
Dual-TRACER reconstruction could potentially alleviate this issue as
well (Xu et al., 2013).

Fig. 10. Comparison of PICCS, k-t FOCUSS, TV-based CS, TRACER and Dual-TRACER in the finger tapping experiment. The acquisition used a 20× undersampling rate for a target
resolution of 1×1 mm2.
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Conclusions

In this study, a new reconstruction method, Dual-TRACER, is
proposed for high resolution fMRI from highly under-sampled data.
Compared with the CS based methods and TRACER, Dual-TRACER

provides better signal fidelity, higher fMRI signal sensitivity and more
reliable activation maps. The improved spatial resolution and main-
tained temporal resolution are potentially beneficial to psychiatry
studies and neuroscience research.

Appendix A

Iterative algorithm for the TRACER reconstruction.

f(xn)= ||yn-Exn||
2+λ||xn -xn,0||

2

∇f(xn)=(EHE+λ)xn-(λxn,0+E
Hyn)

(EHE+λ)=A (μxn,0+E
Hy)=b

% Initialization
tol=1e-5, ite_max=100;
n=1

% Iterations
while (n≤ frame_num)

r0=b-Axn,0, p0=r0
k=0
while (k < ite_max or ||rk|| > tol)

αk=(rk
Hrk/)/(pk

HApk)
xn,k+1=xn,k+αkpk
rk+1=rk-αkApk
βk=(rk+1

Hrk+1)/(rk
Hrk)

pk+1=rk+1+βkpk
k=k+1

end while
xn =xn,k-1
xn+1,0 =xn
n=n+1
end while
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