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Visual association learning induces global network reorganization 
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A B S T R A C T   

It has been proposed that visual learning is accomplished not only by neural plasticity in the visual cortex, but 
also by complex interactions between bottom-up and top-down processes that may induce global network 
reorganization. Here, we applied a multivariate analysis to functional connectivity (FC) patterns across the brain 
to investigate how visual association learning was achieved through large-scale network reorganization. Par
ticipants were trained to associate a set of artificial line-drawing objects with English letters. After three 
consecutive days of training, participants underwent a functional magnetic resonance imaging scan in which 
they were presented with the trained stimuli, untrained stimuli, and English words. By calculating pairwise FC 
between 189 nodes of 10 well-established networks across the brain, we found that the visual association 
learning induced changes in the global FC pattern when viewing the trained stimuli, rendering it more similar to 
the FC pattern when viewing English words. Critically, the learning-induced global FC pattern differences were 
mainly driven by the FC related to the high-level networks involved in attention and cognitive control, suggesting 
the modification of top-down processes during learning. In sum, our study provides one of the first evidence 
revealing global network reorganization induced by visual learning and sheds new light on the network 
mechanisms of top-down influences in learning.   

1. Introduction 

Extensive findings indicate that visual learning can improve 
behavior performance in the training tasks and modify the visual system 
of humans and animals (Li, 2016; Watanabe and Sasaki, 2015). For 
example, training to discriminate basic visual properties (e.g., grating 
orientation, contrast, motion direction) or more complex visual objects 
modifies neuronal responses in the early or higher-order visual cortical 
areas (Baker et al., 2007; de Beeck et al., 2006; Golby et al., 2001; 
Kobatake et al., 1998; Logothetis et al., 1995; A. Schoups, Vogels, Qian 
and Orban, 2001; A. A. Schoups, Vogels and Orban, 1995; Shiu and 
Pashler, 1992; Sigman et al., 2005). However, it is increasingly 
acknowledged that visual learning is a complex and constructive process 
and is not mediated by local changes in the visual cortex alone. 

Accumulating evidence indicates that top-down influences play a 
pivotal role in visual learning. Behaviorally, psychophysics studies 
demonstrate that the learning effect of discriminating grating orienta
tions or motion directions can transfer to untrained location or stimulus 

properties with double-training procedures, suggesting the involvement 
of high-level cognitive processes (Wang et al., 2016; Wang et al., 2012; 
Xiao et al., 2008). The role of top-down influences in visual learning is 
also supported by physiological and neuroimaging studies showing 
task-dependent modulation of responses in the visual areas when two 
different tasks are trained for an identical set of stimuli (Li et al., 2004; 
Song et al., 2010b). More direct evidence for the involvement of 
top-down processes in visual learning come from neuroimaging studies 
showing that training of visual tasks induced activation changes in 
high-level fronto-parietal areas responsible for attentional control and 
decision making, in addition to changes in the visual areas (Kahnt et al., 
2011; Lewis et al., 2009; Mukai et al., 2007; Sigman et al., 2005). Visual 
learning also strengthens functional connectivity (FC) between the vi
sual areas and fronto-parietal areas (Lewis et al., 2009; Mukai et al., 
2007). Therefore, convergent evidence suggests that visual learning 
induces complex interactions between bottom-up sensory processing 
and top-down cognitive control, which may manifest as large-scale 
network reorganization in addition to local changes. Here we tested 
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this hypothesis by exploring the plasticity of global FC patterns across 
the brain with a multivariate approach (Dresler et al., 2017; Tambini 
et al., 2017). 

To do this, participants were trained to associate a set of artificial 
line-drawing objects with English letters for three consecutive days, and 
underwent an fMRI scan after learning. Then, we calculated pairwise FC 
between 189 nodes from 10 well-established networks across the whole 
brain (Cole et al., 2013; Power et al., 2011) when participants viewed 
English words, the trained and untrained stimuli respectively. Instead of 
examining univariate changes in the FC for the trained stimuli, we used 
an FC pattern similarity analysis (Dresler et al., 2017; Tambini et al., 
2017) to compare the multivariate FC pattern for the trained stimuli to a 
template provided by the FC pattern for English words. We tested 
whether the global FC pattern for the trained objects became more 
similar to the learning template and, more importantly, whether the 
learning-induced changes in global FC pattern were driven by the con
nectivity related to the high-level control networks or low-level sensory 
networks. Although changes in local activation have usually been 
observed in low-level visual system, we predicted that the training 
would induce distributed differences in the FC pattern of the high-level 
control networks if top-down influences indeed play a critical role in 
visual learning. 

2. Materials and methods 

2.1. Participants 

Twelve college students (six females, aged 21–28) with normal or 
corrected-to-normal vision participated in the study. All participants 
were native Chinese speakers who have studied English for at least 10 
years. None of the participants had any history of neurological or psy
chiatric disorders. The fMRI protocol was approved by the IRB of the 
Institute of Biophysics, Chinese Academy of Sciences. All participants 
provided written informed consent and were paid for their participation. 
Part of the dataset was reported in our previous study with analyses of 
regional activation (Song et al., 2010a). 

2.2. Behavioral training 

Participants were trained with an visual association task to learn 16 
paired associates, in which each line-drawing figure was paired with 
either a consonant (e.g., b, Fig. 1A) or two vowels/one vowel + one 
consonant (e.g., ie, ar, Fig. 1A). This design allowed us to create stimuli 
that corresponded to three-letter English words (e.g., bar) by combining 

two trained figures (Fig. 1C) for the fMRI scanning session. Participants 
were first shown all 16 paired associates to be familiar with them before 
the training task. Then, they performed a two-alternative forced choice 
task to determine whether the presented stimulus pair was one of the 
correct associates. Each trial started with a blank screen for 800 ms, 
followed by a stimulus pair, which was presented until a response was 
made (Fig. 1B). Auditory feedback was given to indicate whether the 
response was correct (high pitch) or incorrect (low pitch). Half the trial 
contained the correct paired associates, whereas the other half con
tained the incorrect ones. There were 480 trials in each training session 
and the training ended when the reaction time (RT) reached asymptote 
(i.e., no significant decrease in at least three consecutive sessions). On 
average, all participants completed at least ten training sessions, which 
took about 3–4 h for two to three successive days. One participant’s 
behavioral data was accidentally lost due to improper saving, and there 
were eleven participants left for behavioral data analysis. 

2.3. fMRI scanning 

After behavioral training, each participant completed an MRI scan
ning session, consisting of (1) three blocked-design functional localizer 
runs (three of the participants participated in two runs) and (2) three 
blocked-design experimental runs. There were five stimuli categories in 
the localizer runs, including English words, Chinese characters, frontal- 
view faces, line-drawing objects, and scrambled line-drawing objects. 
The experimental runs consisted of four sets of dumbbell-shaped stimuli, 
each created by combining two trained or untrained figures with a 
connection bar. One set of dumbbell-shaped stimuli were formed by 
trained figures, which corresponded to English words (Trained, Fig. 1C), 
and another set of stimuli were formed by 16 untrained figures (Novel, 
Fig. 1C) to serve as the baseline. The English words corresponding to the 
trained stimuli were different from those used in the localizer runs. The 
other two sets of dumbbell-shaped stimuli were formed by trained 
stimuli too, but did not correspond to English words. 

Each localizer or experimental run consisted of four 15-s blocks for 
each stimuli type and five 15-s blocks of fixation. Participants were 
asked to press a button whenever they saw two identical stimuli in a row 
(for more details on the paradigm, see (Song et al., 2010a)). 

2.4. MRI data acquisition 

Images were acquired using a 3T Siemens Trio scanner with an eight- 
channel phased-array head coil at Beijing Imaging Center for Brain 
Research in the Institute of Biophysics, Chinese Academy of Sciences. 

Fig. 1. Stimuli and behavioral training. A, Participants learned 16 paired associates in which each line-drawing figure was paired with either an English consonant 
or two vowels. B, Visual association learning procedure. Participants conducted a two-alternative forced-choice task to determine whether a stimulus pair was one of 
the actual paired associates. C, Examples of the stimuli in fMRI experimental runs. Dumbbell-shaped stimuli were created by combining two trained or novel figures. 
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Thirty 2.3-mm-thick (20% skip) near axial slices were collected (in- 
plane resolution = 1.4 × 1.4 mm) and oriented parallel to each subject’s 
temporal cortex. A T2*-weighted gradient-echo echo-planar-imaging 
(EPI) sequence was used (TR = 3000 ms, TE = 32 ms, flip angle =
90◦). In addition, three-dimensional (3D) structural images were ac
quired with MPRAGE, an inversion prepared gradient echo sequence 
(TR/TE/TI = 2730/3.44/1000 ms, flip angle = 7◦, voxel size = 1.1 ×
1.1 × 1.9 mm3). 

2.5. fMRI data preprocessing 

The functional images were preprocessed with the FMRI Expert 
Analysis Tool (FEAT) of the Oxford Centre for Functional Magnetic 
Resonance Imaging of the Brain (FMRIB) Software Library (FSL, 
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The preprocessing was conduct
ed separately on each run for each participant and included the 
following steps: motion correction, brain extraction, spatial smoothing 
with a 4-mm FWHM Gaussian kernel, intensity normalization, and high- 
pass temporal filtering (0.01 Hz). To reduce further the physiological 
noise, such as fluctuations caused by motion, cardiac and respiratory 
cycles, nuisance signals from cerebrospinal fluid, white matter, motion 
correction parameters, and first derivatives of these signals were 
regressed out using the methods described in previous studies (Biswal 
et al., 2010; Fox et al., 2005). Registration of each participant’s fMRI 
images to the structural images was carried out using FMRIB’s linear 
image registration tool (FLIRT). Registration of each participant’s 
structural images to the Montreal Neurological Institute (MNI) space (2 
× 2 × 2 mm3) was accomplished using FMRIB’s nonlinear image 
registration tool (FNIRT) (Jenkinson et al., 2002; Jenkinson and Smith, 
2001). 

2.6. Definition of nodes and networks 

We used the nodes defined in Power et al. (2011) to construct the 
whole brain networks, which have been shown to provide high 
test-retest reliability of global network properties (Cao et al., 2014) and 
demonstrated to be representative for global networks (Gordon et al., 
2014; Mohr et al., 2016; Power et al., 2011). Of the original 264 nodes in 
Power et al. (2011), 227 nodes have been assigned to 10 networks 
well-established in previous studies, comprising the sensorimotor, vi
sual, auditory, salience, subcortical networks, default mode network 
(DMN), ventral and dorsal attention networks (VAN and DAN), and 
frontal-parietal and cingulo-opercular task control networks (FPN and 
CON) (Cole et al., 2013; Mohr et al., 2016). We then defined 5-mm-ra
dius spheres centered on the coordinates of all the 227 nodes reported 
by Power et al. (2011) and projected them to the brain of each of our 
participants. Several nodes were discarded due to incomplete coverage 
of parietal and frontal lobes during functional data acquisition across 
participants, with 189 remaining nodes distributed in the 10 networks 
(sensorimotor: 24/35, visual: 28/31, auditory: 13/13, salience: 18/18, 
subcortical: 13/13, DMN: 44/58, VAN: 8/9, DAN: 9/10, FPN: 21/25 and 
CON: 10/14). 

2.7. FC calculation 

Subsequently, time courses of each non-fixation condition and the 
fixation condition were concatenated from all runs for each node. This 
was done for the localizer and experimental runs separately. We 
extracted the mean time series for each node and calculated Pearson 
correlation between the time series of all nodes, producing a 189 × 189 
FC matrix of r-values for each condition and each participant. Figure S1 
(Supporting Information) displayed the FC matrices for the English 
condition in the localizer runs, the trained and novel conditions in the 
experimental runs, and their corresponding fixation conditions for an 
exemplar participant. The r-values were then transformed to z-scores 
using Fisher’s z-transformation. Previous research has shown that the 

functional network structure is highly similar across a range of task 
states and resting state (Cole et al., 2013; Geerligs et al., 2015; Krienen 
et al., 2014), which was also observed in our results (Supporting Infor
mation, Figure S1). To remove the common network structure under
lying the task and resting states, we performed paired-t tests on the 
z-score FC matrices between each non-fixation condition and their cor
responding fixation condition across participants, producing a 189 ×
189 t-score FC matrix for each non-fixation condition for the following 
analyses (Fig. 2A and B). 

2.8. FC pattern similarity analysis 

The t-score FC matrix during the presentation of English Words (vs. 
fixation) in the localizer runs was used as a template FC pattern 
(Fig. 2A). Pattern similarity was evaluated by calculating spatial corre
lation between the template FC matrix and the FC matrix of each con
dition in the experimental runs (Fig. 2B and C). The learning effect was 
examined by comparing the pattern similarity between the trained 
stimuli and English words (r(E,T)) with that between the novel stimuli 
and English words (r(E,N)). Statistical significance of the pattern simi
larity difference was examined with a permutation test that constructed 
a null distribution for the difference between the two r-values (Fig. 2D). 
We randomly permuted the FC matrices of the trained and novel con
ditions respectively for each participant; the permuted FC matrices for 
the trained and novel conditions were correlated with the FC matrix of 
English words and then the two r values were subtracted. The permu
tation was replicated for 5000 times, resulting in a null distribution for 
the difference between the two r values. The p value was estimated by 
assessing the proportion of r-value differences in the null distribution 
that was higher than the real r-value differences. 

3. Results 

3.1. Behavioral results 

Participants were trained to learn the paired associates between 
novel line-drawing objects and English letters in a two-alternative 
forced-choice (2AFC) task for three consecutive days (Fig. 1A and B). 
As expected, the training greatly improved the behavioral performance 
of the participants. The reaction times (RTs) in association judgment 
decreased monotonically from session 1 to session 6 (F(5,50) = 13.38, p <
0.001) and then reached an asymptote from session 7 to session 10 
(F(3,30) < 1). As the participants had been familiarized with the paired 
associates before the 2AFC task, the mean accuracy remained above 
90% during the entire training process and did not differ across training 
sessions (F(9,90) < 1). 

3.2. Learning induced differences in global organization of brain networks 

During the fMRI scanning after learning, a set of dumbbell-shaped 
objects were presented by combining two trained figures with a 
connection bar, which corresponded to English words (trained, Fig. 1C). 
Another set of dumbbell-shaped objects were created in a similar way by 
combining two untrained figures (novel, Fig. 1C) to serve as the 
baseline. 

First, we examined whether the visual association training modu
lated brain network organization by rendering the global FC pattern for 
the trained stimuli more similar to the template (i.e., FC pattern for the 
English words) after learning. To do this, we calculated pairwise FC 
between 189 nodes belonging to ten networks across the brain to 
construct the FC matrices. We used the t-score FC matrix for English 
words in the localizer runs (English words vs. fixation, Fig. 2A) as the 
template, and calculated the spatial correlation between the template 
and the t-score FC matrices for the trained (vs. fixation, Fig. 2B) and 
novel conditions (vs. fixation, Fig. 2B) in the experimental runs 
respectively. We found that the FC matrices for both the trained and 

M. Yu et al.                                                                                                                                                                                                                                      

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/


Neuropsychologia 154 (2021) 107789

4

novel conditions showed significant correlation to the FC matrix for 
English words (Fig. 2C; r(E,T) = 0.29, p < 0.001; r(E,N) = 0.21, p <
0.001), implicating some shared network patterns generally involved in 
viewing English words and line-drawing objects. Critically, the corre
lation between the FC matrices for English words and the trained stimuli 
was greater than that between English words and the novel stimuli 
(Fig. 2D; permutation p = 0.002), indicating that FC pattern for the 
trained stimuli was more similar to English words after training 
compared with that for the novel stimuli. This result suggested that 
learning to associate objects with English words induced the global 
network organization for the trained stimuli to resemble that for English 
words. 

3.3. Learning modulated the interactions between high- and low-level 
networks 

Next, we investigated whether the difference in global FC pattern 

between the trained and untrained stimuli mainly resulted from mod
ulation of the connectivity related to the high-level networks involved in 
attention and cognitive control or low-level networks involved in sen
sory processing. To do this, we examined the learning-induced FC 
changes for each of the ten networks. Specifically, for each network, we 
collected all the FCs relating to the nodes in the network, comprising all 
the FCs within this network and those between this network and the 
other nine networks (e.g., Fig. 3A). FC pattern similarity analyses were 
performed for each network in the same manner as for the whole-brain 
FC patterns. Interestingly, of the ten networks, the results showed a clear 
distinction between high- and low-level networks. That is, we found 
greater FC pattern similarity between English words and the trained 
stimuli than the novel stimuli for five high-level networks, including the 
cognitive control networks (cingulo-opercular network (CON) and 
fronto-parietal network (FPN)), dorsal and ventral attention networks 
(DAN and VAN), and the default mode network (DMN) (permutation ps 
< 0.05, Fig. 3B). In contrast, no significant learning effect was found for 

Fig. 2. Learning-induced differences in global FC pattern. A, T-score FC matrix for English words in the localizer runs (English vs. fixation). B, T-score FC 
matrices for the trained (vs. fixation, upper) and novel stimuli (vs. fixation, lower) in the experimental runs. C, Scatterplots of the correlations between the FC 
matrices for English words and the trained (r(E,T), left) or novel (r(E,N), right) stimuli. D, A permutation test was used to examine the statistical significance of the 
difference between r(E,T) and r(E,N), and the histogram shows the null distribution of the 5000 permutations. 
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the remaining five low-level networks, including the visual, auditory, 
sensorimotor, subcortical, and salience (SAN) networks (permutation ps 
> 0.05, Fig. 3B). These results suggested that the learning-induced 
network reorganization was mainly driven by the connectivity relating 
to the high-level networks involved in cognitive control and attention 
deployment. 

Since the FC pattern changes relating to high-level networks 

observed above contained both the FCs within high-level networks and 
those between high- and low-level networks (e.g., Fig. 3A), we next 
asked whether learning induced modifications of the interactions be
tween high- and low-level networks, or communications within high- 
level networks, or both. Based on the above results, we merged the 
five high-level networks (i.e., CON, FPN, DAN, VAN, and DMN, in total 
93 nodes), as well as the five low-level networks (i.e., visual, auditory, 

Fig. 3. Learning-induced differences in FC pattern of each network. A, The FC pattern of an exemplar network (visual) that included the FC within this network 
and that between this network and all the other networks. B, The correlations between the FC patterns for English words and the trained (r(E,T)) or novel (r(E,N)) 
stimuli for each network. *p < 0.05, **p < 0.01, permutation test. 

Fig. 4. Learning-induced differences in FC patterns relating to high-level networks. The left column illustrate the FC patterns between high- and low-level 
networks (A), within high-level networks (B), and within low-level networks (C). Scatterplots in the middle columns show correlations between the FC patterns 
for English words and the trained or novel condition. Histograms in the right column show the results of the permutation tests. 
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sensorimotor, subcortical and SAN, in total 96 nodes), and examined the 
learning effect for all the FCs between the high- and low-level networks 
(Fig. 4A, left), within the high-level networks (Fig. 4B, left), and within 
the low-level networks (Fig. 4C, left) respectively. 

First, we examined the FC pattern between high- and low-level net
works (Fig. 4A). We found that the trained stimuli showed greater 
similarity with English words than the novel stimuli (r(E,T) = 0.295, p <
0.001; r(E,N) = 0.20, p < 0.001; permutation p < 0.001; Fig. 4A), 
indicating modification of the interactions between high- and low-level 
networks induced by visual association learning. Of the five low-level 
networks, the visual and sensorimotor networks were more directly 
involved in the training task. We further inspected the FC patterns be
tween individual networks to test whether the training altered the in
teractions between high-level networks and the visual and sensorimotor 
networks. We found greater similarity between English words and the 
trained stimuli than the novel stimuli for the FC pattern between the 
VAN and sensorimotor network (permutation p = 0.006, FDR corrected, 
Supporting Information, Figure S2), and a similar trend was observed for 
the FC pattern between the FPN and visual network (permutation p =
0.055, Supporting Information, Figure S2). Taken together, these results 
suggested an interplay between top-down and bottom-up processes 
during visual association learning. 

Next, we examined the FC pattern within the high-level networks, 
and the result showed higher similarity between English words and the 
trained stimuli than the novel stimuli (r(E,T) = 0.31, p < 0.001; r(E,N) =
0.18, p < 0.001; permutation p = 0.006; Fig. 4B). This result indicated 
reorganization among high-level networks induced by visual association 
learning. Further inspection of FC patterns between individual networks 
revealed significant learning effect (r(E,T) > r(E,N)) for the FC patterns 
of FPN-VAN, FPN-DAN and FPN-DMN (permutation ps < 0.05, FDR 
corrected, Supporting Information, Figure S3), indicating modification 
of interactions among the cognitive control and attention networks. 

Finally, consisting with the above results, there was no learning ef
fect within the low-level networks (r(E,T) = 0.26, p < 0.001; r(E,N) =
0.26, p < 0.001; permutation p = 0.507; Fig. 4C). The absence of 
learning effect within the low-level networks might result from some 
networks less involved in the training task, such as auditory and 
subcortical networks. Therefore, we examined the learning effect for all 
the FCs among the nodes in the visual network only (28 nodes). Still, 
there was no difference in the FC pattern similarity with English words 
between the trained and novel stimuli (r(E,T) = 0.73, p < 0.001; r(E,N) 
= 0.70, p < 0.001; permutation p = 0.40). Taken together with the 
learning effect observed between the FPN and visual network, these 
results suggested that visual association learning might rely more on 
adjustment of modulations from high-level cognitive control areas to 
visual areas than on modification of interactions among the visual 
regions. 

In addition, we examined whether the observed FC pattern differ
ence between the trained and novel stimuli was attributed to the general 
effect of familiarity. Participants were presented with stimuli corre
sponded to English pseudo-words (PW, e.g., cie) during scanning, which 
were also composed of trained figures and thus familiar to participants. 
However, we found that the PW condition showed lower similarity with 
English words than RW for both the FC pattern between high- and low- 
level networks (r(E,PW) = 0.22, p < 0.001; permutation p = 0.014) and 
that within high-level networks (r(E,PW) = 0.243, p < 0.001; permu
tation p = 0.041), and did not differ from novel condition (permutation 
ps > 0.05). These results indicated that the observed learning effect of 
RW could not be fully accounted for by familiarity. 

3.4. Transfer of the learning effects to other language 

Next, we asked whether the learning effect of associating novel ob
jects with English letters was specific to English or could generalize to 
other language familiar to the participants (i.e. Chinese). We performed 
similar FC pattern analyses for Chinese characters as for English words, 

using the FC matrix when participants viewing Chinese characters as the 
template. We found that the trained stimuli showed greater similarity 
with Chinese characters than the novel stimuli (r(C,T) = 0.28, p < 0.001; 
r(C,N) = 0.22, p < 0.001, Fig. 5A; permutation p = 0.015, Fig. 5B). This 
result indicated that the whole-brain network organization for the 
trained stimuli became more similar not only to English, but also to 
Chinese. Meanwhile, no significant difference was found between the 
trained and novel stimuli in the FC pattern similarity with face or line- 
drawing object condition (permutation ps > 0.05), indicating that the 
trained stimuli were not processed similarly as other line-drawing ob
jects or faces. Taken together, these results suggested that the network 
organization pattern for the trained stimuli resembled that for language 
processing. 

Further analyses were conducted for the FC patterns within high- 
level, within low-level, and between high- and low-level networks 
separately. Replicating the results for English words, we found greater 
resemblance between the trained stimuli and Chinese characters than 
the novel stimuli for the FC pattern within high-level networks (per
mutation p = 0.041; Fig. 5C) and that between high- and low-level 
networks (permutation p = 0.005; Fig. 5C), but not for the FC pattern 
within low-level networks (permutation p = 0.252; Fig. 5C). Taken 
together, the generalization of the learning effects to Chinese supported 
the role of top-down modulations in visual association learning, that is, 
the artificial objects were associated with general language information, 
rather than visual properties of English letters per se, during learning. 

4. Discussion 

In the current study, we applied the multivariate analysis to the 
whole-brain FC profiles to investigate how the learning goal of visual 
association training was achieved through large-scale network reorga
nization. We found that the training rendered the global FC pattern 
when viewing the trained stimuli more similar to the FC pattern when 
viewing English words. More importantly, further analyses showed that 
the learning-induced differences in global FC pattern arose from the FC 
between high-level cognitive control and attention networks and low- 
level visual and sensorimotor networks, as well as the FC among high- 
level networks. These findings suggested interactions of bottom-up 
and top-down processes and highlighted the pivotal role of top-down 
modulation in visual learning. 

Our study provided the first evidence that visual association learning 
was supported by changes in whole-brain FC profiles that engaged the 
majority of the ten networks examined here, displaying a clear picture of 
global network reorganization in visual learning. Our study extended 
previous findings by showing learning-induced connectivity changes not 
only among a small number of regions, but widely distributed across 
multiple networks (Chen et al., 2015; Lewis et al., 2009; Mukai et al., 
2007). More importantly, while previous studies with univariate 
approach revealed learning effects as either increase or decrease of FC 
among different regions which are difficult to interpret, our study used 
the multivariate pattern similarity analysis to reveal the FC changes that 
contribute directly to the achievement of the learning goal. 

Further, the changes in global FC pattern were mainly driven by the 
connectivity related to the high-level networks, including the FC be
tween high- and low-level networks as well as that among high-level 
networks. In contrast, no network reorganization was found in low- 
level networks. Therefore, although changes in neural activation are 
usually observed in sensory and perceptual cortical regions (i.e., low- 
level cortical regions) in visual learning, the learning may actually 
occur in high-level networks, and then propagate back to low-level 
cortical regions. In line with this speculation, a recent physiological 
study shows that visual-avoidance association learning enhances top- 
down projection from high-level area to the mouse V1 and adjusts the 
balance between bottom-up and top-down inputs in the V1 (Makino and 
Komiyama, 2015). 

More specifically, the high-level networks modified by learning were 
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those engaged in task control and attention deployment (i.e., FPN, VAN, 
DAN, and DMN). Thus, our study revealed how the top-down influences 
of the task and attention factors might be implemented through network 
reorganization during learning. The influence of task context has been 
indicated by task specificity of visual learning, that is, the learning effect 
can hardly transfer across tasks even if the trained stimuli are identical 
(Ahissar and Hochstein, 1993; Saffell and Matthews, 2003; Shiu and 
Pashler, 1992). Such behavioral task specificity corresponds well to the 
task-dependent neural response changes in visual areas for identical 
trained stimuli (Li et al., 2004; Song et al., 2010b). Top-down attention 
plays a role in task specificity by selectively attending to task-relevant 
features and ignoring irrelevant features (Vidnyánszky and Sohn, 
2005), and the importance of attention is also indicated by the findings 
that passive exposure to the stimulus can hardly produce learning effects 
(Li et al., 2006). In particular, our previous study found that learning of 
the same set of line-drawing objects increases activation in the VWFA 
with a visual association task but produces greater activation in regions 
processing general objects with a discrimination task, indicating the 
modulation of task context and attention in learning (Song et al., 
2010b). Critically, here we further revealed the network reorganization 
mechanisms that may mediate these top-down modulation effects of the 
task and attention factors. 

Different models have been proposed to account for the mechanisms 
of visual learning. While the input selection models assume that learning 
refines neural representation of the trained stimuli in the low-level 
sensory areas (Fahle, 2004), the readout reweighting models postulate 
that learning improves readout of visual inputs through reweighting 
connections between low-level sensory signals and high-level decision 
unit (Dosher and Lu, 1998; Kahnt et al., 2011; Law and Gold, 2008; 

Petrov et al., 2005). The altered FC pattern between high- and low-level 
networks revealed in the present study fits nicely with the reweighting 
models, especially those proposing that visual learning mainly occur in 
high-level areas since the reweighting rules are learned by the decision 
unit in high-level areas (Zhang et al., 2010). Notably, the mechanisms of 
visual representation refinement and connectivity reweighting are not 
mutually exclusive. The visual association task used in our study not 
only modifies FC pattern between high- and low-level networks, but also 
alters the responses for the trained stimuli in the visual cortex (Song 
et al., 2010a). That is, the responses in the visual area may reflect an 
association-based representation resulting from top-down modulation 
during learning. In addition, our results are also in agreement with the 
predictive coding models in which learning leads to the generation and 
enhancement of top-down predictions that modulate bottom-up pro
cessing to minimize predictive errors (Makino and Komiyama, 2015). 

Finally, the large-scale network reorganization revealed in visual 
learning may be a general mechanism shared by various types of 
learning. For example, a long-term motor learning over six weeks in
duces reconfiguration of distributed networks involving the motor, vi
sual, and cognitive control networks (Bassett et al., 2015). Even the 
rapid practice of novel task rules over less than 2 min is associated with 
large-scale network reorganization among multiple high-level networks 
including the FPN, DAN, CON, and DMN (Mohr et al., 2016). These 
findings suggest that interplay between top-down and bottom-up pro
cesses is generally responsible for learning from different modalities. 
Future studies are invited to reveal the global network reorganization 
mechanisms for more learning tasks and compare them across various 
learning types to deepen our understanding of brain plasticity in gen
eral. In addition to the implications for learning studies, global network 

Fig. 5. Transfer of learning effects to Chinese. A, Scatterplots showing the correlations between the FC matrices for Chinese characters and the trained (r(C,T)) or 
novel stimuli (r(C,N)). B, Result of the permutation test for the difference between r(C,T) and r(C,N). C, The correlations between the FC patterns for Chinese 
characters and the trained (r(C,T)) or novel stimuli (r(C,N)) for the FC between high- and low-level networks, within high-level networks, and within low-level 
networks. *p < 0.05, **p < 0.01, n.s. not significant, permutation test. 
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reorganization has also broad implications for visual cognition (Bola and 
Sabel, 2015) and clinical situations (Bola et al., 2014; Bola et al., 2015). 
For example, EEG studies have shown global network reorganization in 
patients with optic nerve damage which is related to their vision loss and 
restoration (Bola et al., 2014; Bola et al., 2015). Future studies are 
invited to reveal the global network reorganization mechanisms for 
more learning tasks and variant clinical situations to deepen our un
derstanding of brain plasticity in general. 
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